Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Overexpression of an activated REL mutant enhances the transformed state of the human B-lymphoma BJAB cell line and alters its gene expression profile

Abstract

The human REL proto-oncogene encodes a transcription factor in the nuclear factor (NF)-κB family. Overexpression of REL is acutely transforming in chicken lymphoid cells, but has not been shown to transform any mammalian lymphoid cell type. In this report, we show that overexpression of a highly transforming mutant of REL (RELΔTAD1) increases the oncogenic properties of the human B-cell lymphoma BJAB cell line, as shown by increased colony formation in soft agar, tumor formation in SCID (severe combined immunodeficient) mice, and adhesion. BJAB-RELΔTAD1 cells also show decreased activation of caspase in response to doxorubicin. BJAB-RELΔTAD1 cells have increased levels of active nuclear REL protein as determined by immunofluorescence, subcellular fractionation and electrophoretic mobility shift assay. Overexpression of RELΔTAD1 in BJAB cells has transformed the gene expression profile of BJAB cells from that of a germinal center B-cell subtype of diffuse large B-cell lymphoma (DLBCL) (GCB-DLBCL) to that of an activated B-cell subtype (ABC-DLBCL), as evidenced by increased expression of many ABC-defining mRNAs. Upregulated genes in BJAB-RELΔTAD1 cells include several NF-κB targets that encode proteins previously implicated in B-cell development or oncogenesis, including BCL2, IRF4, CD40 and VCAM1. The cell system we describe here may be valuable for further characterizing the molecular details of REL-induced lymphoma in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403: 503–511.

    Article  CAS  Google Scholar 

  • Barth TF, Martin-Subero JI, Joos S, Menz CK, Hasel C, Mechtersheimer G et al. (2003). Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood 101: 3681–3686.

    Article  CAS  Google Scholar 

  • Clodfelter KH, Miles GD, Wauthier V, Holloway MG, Zhang X, Hodor P et al. (2007). Role of STAT5a in regulation of sex-specific gene expression in female but not male mouse liver revealed by microarray analysis. Physiol Genomics 31: 63–74.

    Article  CAS  Google Scholar 

  • Davis RE, Brown KD, Siebenlist U, Staudt LM . (2001). Constitutive nuclear factor κB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194: 1861–1874.

    Article  CAS  Google Scholar 

  • Dierlamm J, Murga Penas EM, Bentink S, Wessendorf S, Berger H, Hummel M et al. (2008). Gain of chromosome region 18q21 including the MALT1 gene is associated with the activated B-cell-like gene expression subtype and increased BCL2 gene dosage and protein expression in diffuse large B-cell lymphoma. Haematologica 93: 688–696.

    Article  CAS  Google Scholar 

  • Enberg I, Klein G, Biovanella BC, Stehlin J, McCormick KJ, Andersson-Anvret M et al. (1983). Relationship between the amounts of EBV-DNA and EBNA per cell, clonability and tumorigenicity in two EBV-negative lymphoma lines and their EBV-converted cell lines. Int J Cancer 31: 163–169.

    Article  Google Scholar 

  • Feuerhake F, Kutok JL, Monti S, Chen W, LaCasce AS, Cattoretti G et al. (2005). NF-κB activity, function and target gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood 106: 1392–1399.

    Article  CAS  Google Scholar 

  • Finke J, Fritzen R, Ternes P, Trivedi P, Bross KJ, Lange W et al. (1992). Expression of bcl-2 in Burkitt's lymphoma cell lines: induction by latent Epstein–Barr virus genes. Blood 80: 459–469.

    CAS  PubMed  Google Scholar 

  • Gapuzan M-E, Yufit PV, Gilmore TD . (2002). Immortalized embryonic mouse fibroblasts lacking the RelA subunit of transcription factor NF-κB have a malignantly transformed phenotype. Oncogene 21: 2484–2492.

    Article  CAS  Google Scholar 

  • Gilmore TD . (1999). Multiple mutations contribute to the oncogenicity of the retroviral oncoprotein v-Rel. Oncogene 18: 6925–6937.

    Article  CAS  Google Scholar 

  • Gilmore TD, Jean-Jacques J, Richards R, Cormier C, Kim J, Kalaitzidis D . (2003). Stable expression of the avian retroviral oncoprotein v-Rel in avian, mouse, and dog cell lines. Virology 316: 9–16.

    Article  CAS  Google Scholar 

  • Gilmore TD, Kalaitzidis D, Liang M-C, Starczynowski DT . (2004). The c-Rel transcription factor and B-cell proliferation: a deal with the devil. Oncogene 23: 2275–2286.

    Article  CAS  Google Scholar 

  • Gupta N, Delrow N, Drawid A, Sengupta AM, Fan G, Gélinas C . (2008). Repression of B-cell linker (BLNK) and B-cell adaptor for phosphoinoside 3-kinase (BCAP) is important for lymphocyte transformation by Rel proteins. Cancer Res 68: 808–814.

    Article  CAS  Google Scholar 

  • Hammarskjold ML, Simurda MC . (1992). Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF-κB activity. J Virol 66: 6496–6501.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R et al. (1991). Induction of bcl-2 expression by Epstein–Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65: 1107–1115.

    Article  CAS  Google Scholar 

  • Ho L, Davis RE, Conne B, Chappuis R, Berczy M, Mhawech P et al. (2005). MALT1 and the AP12-MALT1 fusion act between CD40 and IKK and confer NF-κB-dependent proliferative advantage and resistance against FAS-induced cell death in B cells. Blood 105: 2891–2899.

    Article  CAS  Google Scholar 

  • Holloway MG, Miles GD, Dombkowski AA, Waxman DJ . (2008). Liver-specific hepatocyte nuclear factor-4α deficieny: greater impact on gene expression in male than in female mouse liver. Mol Endocrinol 22: 1274–1286.

    Article  CAS  Google Scholar 

  • Houldsworth J, Olshen AB, Cattoretti G, Donnelly GB, Teruya-Feldstein J, Qin J et al. (2004). Relationship between REL amplification, REL function, and clinical and biologic features in diffuse large B cell lymphomas. Blood 203: 1862–1868.

    Article  Google Scholar 

  • Hrdličková R, Nehbya J, Bose Jr HR . (2001). Interferon regulatory factor 4 contributes to transformation of v-Rel-expressing fibroblasts. Mol Cell Biol 21: 6369–6386.

    Article  Google Scholar 

  • Iqbal J, Neppalli VT, Wright G, Dave BJ, Horsman DE, Rosenwald A et al. (2006). BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J Clin Oncol 24: 961–968.

    Article  CAS  Google Scholar 

  • Kalaitzidis D, Davis RE, Rosenwald A, Staudt LM, Gilmore TD . (2002). The human B-cell lymphoma cell line RC-K8 has multiple genetic alterations that dysregulate the Rel/NF-κB signal transduction pathway. Oncogene 21: 8759–8768.

    Article  CAS  Google Scholar 

  • Kalaitzidis D, Gilmore TD . (2002). Genomic organization and expression of the rearranged REL proto-oncogene in the human B-cell lymphoma cell line RC-K8. Genes Chromosomes Cancer 34: 129–135.

    Article  CAS  Google Scholar 

  • Lam LT, Davis RE, Ngo VN, Lenz G, Wright G, Xu W et al. (2008). Compensatory IKKα activation of classical NF-κB signaling during IKKβ inhibition identified by an RNA interference sensitization screen. Proc Natl Acad Sci USA 105: 20798–20803.

    Article  CAS  Google Scholar 

  • Lee HH, Dempsey PW, Parks TP, Zhu X, Baltimore D, Cheng G . (1999). Specificities of CD40 signaling: involvement of TRAF2 in CD40-induced NF-κB activation and intracellular adhesion. Proc Natl Acad Sci USA 96: 1421–1426.

    Article  CAS  Google Scholar 

  • Leeman JR, Weniger MA, Barth TF, Gilmore TD . (2008). Deletion analysis and alternative splicing define a transactivation inhibitory domain in human oncoprotein REL. Oncogene 27: 6770–6781.

    Article  CAS  Google Scholar 

  • Liang M-C, Bardhan S, Li C, Pace EA, Porco Jr JA, Gilmore TD . (2003). Jesterone dimer, a synthetic derivative of the fungal metabolite jesterone, blocks activation of transcription factor nuclear factor κB by inhibiting the inhibitor of κB kinase. Mol Pharmacol 64: 123–131.

    Article  CAS  Google Scholar 

  • Lucas PC, Kuffa P, Gu S, Kohrt D, Kim DS, Siu K et al. (2007). A dual role for the AP12 moiety in AP12-MALT-dependent NF-κB activation: heterotypic oligomerization and TRAF2 recruitment. Oncogene 26: 5843–5854.

    Article  Google Scholar 

  • Mainou BA, Raab-Traub N . (2006). LMP1 strain variants: biological and molecular properties. J Virol 80: 6458–6468.

    Article  CAS  Google Scholar 

  • Martin AG, San-Antonio B, Fresno M . (2001). Regulation of nuclear factor κB transactivation: implications of phosphatidylinositol 3-kinase and protein kinase Cζ in c-Rel activation by tumor necrosis factor α. J Biol Chem 276: 15840–15849.

    Article  CAS  Google Scholar 

  • Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, Lenz G et al. (2006). A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441: 106–110.

    Article  CAS  Google Scholar 

  • Pavlidis P, Noble WS . (2003). Matrix2png: a utility for visualizing matrix cata. Bioinformatics 19: 295–296.

    Article  CAS  Google Scholar 

  • Perez JR, Higgins-Sochaski KA, Maltese JY, Narayanan R . (1994). Regulation of adhesion and growth of fibrosarcoma cells by NF-κB RelA involves transforming growth factor beta. Mol Cell Biol 14: 5326–5332.

    Article  CAS  Google Scholar 

  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Barrette TR, Ghosh D, Chinnaiyan AM . (2005). Mining for regulatory programs in the cancer transcriptome. Nat Genet 37: 579–583.

    Article  CAS  Google Scholar 

  • Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. (2002). The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma. N Engl J Med 346: 1937–1947.

    Article  Google Scholar 

  • Shaffer AL, Rosenwald A, Staudt LM . (2002). Lymphoid malignancies: the dark side of B-cell differentiation. Nat Rev Immunol 2: 920–933.

    Article  CAS  Google Scholar 

  • Shaffer AL, Tolga Emre NC, Lamy L, Ngo VN, Wright G, Xiao W et al. (2008). IRF4 addiction in multiple myeloma. Nature 454: 226–231.

    Article  CAS  Google Scholar 

  • Shipp MA, Ross KN, Tamayo P, Weng AP, Lutok JL, Aguiar RCT et al. (2002). Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8: 68–74.

    Article  CAS  Google Scholar 

  • Snow AL, Lambert SL, Natkunam Y, Esquival CO, Krams SM, Martinez OM . (2006). EBV can protect latently infected B cell lymphomas from death receptor-induced apoptosis. J Immunol 177: 3283–3293.

    Article  CAS  Google Scholar 

  • Springer TA, Vonderheide RH . (1992). Lymphocyte adhesion through very late antigen 4: evidence for a novel binding site in the alternatively spliced domain of vascular cell adhesion molecule 1 and an additional alpha 4 integrin counter-receptor on stimulated endothelium. J Exp Med 175: 1433–1442.

    Article  Google Scholar 

  • Starczynowski DT, Reynolds JG, Gilmore TD . (2003). Deletion of either C-terminal transactivation subdomain enhances the in vitro transforming activity of human transcription factor REL in chicken spleen cells. Oncogene 22: 6928–6936.

    Article  CAS  Google Scholar 

  • Starczynowski DT, Reynolds JG, Gilmore TD . (2005). Mutations of tumor necrosis factor α-responsive serine residues within the C-terminal transactivation domain of human transcription factor REL enhance its in vitro transforming ability. Oncogene 24: 7355–7368.

    Article  CAS  Google Scholar 

  • Starczynowski DT, Trautmann H, Pott C, Harder L, Arnold N, Africa JA et al. (2007). Mutation of an IKK phosphorylation site within the transactivation domain of REL in two patients with B-cell lymphoma enhances REL's in vitro transforming activity. Oncogene 26: 2685–1694.

    Article  CAS  Google Scholar 

  • Stoffel A, Chaurushiya M, Singh B, Levine AJ . (2004). Activation of NF-κB and inhibition of p53-mediated apoptosis by AP12/mucosa-associated lymphoid tissue 1 fusions promote oncogenesis. Proc Natl Acad Sci USA 101: 9079–9084.

    Article  CAS  Google Scholar 

  • van Imhoff GW, Boerma EJ, van der Holt B, Schuuring E, Verdonck LF, Kluin-Nelemans HC et al. (2006). Prognostic impact of germinal center-associated proteins and chromosomal breakpoints in poor-risk diffuse large B-cell lymphoma. J Clin Oncol 24: 4135–4142.

    Article  CAS  Google Scholar 

  • Voorzanger-Rousselot N, Favrot M-C, Blay J-Y . (1998). Resistance to cytotoxic chemotherapy induced by CD40 ligand in lymphoma cells. Blood 92: 3381–3387.

    CAS  PubMed  Google Scholar 

  • Wennborg A, Aman P, Saranath D, Pear W, Sümegi J, Klein G . (1987). Conversion of the lymphoma cell line ″BJAB″ by Epstein-Barr virus into phenotypically altered sublines is accompanied by increased c-myc RNA levels. Int J Cancer 40: 202–206.

    Article  CAS  Google Scholar 

  • Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM . (2003). A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA 100: 9991–9996.

    Article  CAS  Google Scholar 

  • Yamamoto N, Takizawa T, Iwanaga Y, Shimizu N, Yamamoto N . (2000). Malignant transformation of B lymphoma cell line BJAB by Epstein–Barr virus-encoded small RNAs. FEBS Lett 484: 153–158.

    Article  CAS  Google Scholar 

  • Zarnegar B, He JQ, Oganesyan G, Hoffman A, Baltimore D, Cheng G . (2004). Unique CD40-mediated biological program in B cell activation requires both type 1 and type 2 NF-κB activation pathways. Proc Natl Acad Sci USA 101: 8108–8113.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Belmonte for help with tumor injections and microarray analysis, and M Garbati, J Leeman, D Kalaitzidis and D Starczynowski for helpful discussions. MC was supported by a Beckman Foundation Undergraduate Scholarship, MH was partially supported by a Predoctoral Fellowship from the Natural Sciences and Engineering Research Council of Canada and NZ was partially supported by the Boston University Undergraduate Research Opportunities Program. This study was supported in part by the Superfund Basic Research Program at Boston University 5 P42 ES07381 (DJW) and NIH Grant CA047763 (TDG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T D Gilmore.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, M., Herscovitch, M., Zhang, N. et al. Overexpression of an activated REL mutant enhances the transformed state of the human B-lymphoma BJAB cell line and alters its gene expression profile. Oncogene 28, 2100–2111 (2009). https://doi.org/10.1038/onc.2009.74

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.74

Keywords

This article is cited by

Search

Quick links