Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Galectin-1 is a major effector of TrkB-mediated neuroblastoma aggressiveness

Abstract

Expression of Trk receptors is an important prognostic factor in neuroblastoma (NB) and other cancers. TrkB and its ligand brain-derived neurotrophic factor (BDNF) are preferentially expressed in NB with poor prognosis, conferring invasive and metastatic potential to the tumor cells as well as enhancing therapy resistance. Galectin-1 (Gal-1) has emerged as an interesting cancer target, as it is involved in modulating cell proliferation, cell death and cell migration, all of which are linked to cancer initiation and progression. We previously identified Gal-1 mRNA to be upregulated in patients with aggressive, relapsing NB and found that Gal-1 protein was upregulated in human SY5Y NB cells on activation of ectopically expressed TrkB (SY5Y-TrkB), but not TrkA (SY5Y-TrkA). Here, we report that Gal-1 mRNA levels positively correlated with TrkB expression and anticorrelated with TrkA expression in a cohort of 102 primary NB. Immunohistochemical analyses of 92 primary NB specimens revealed high Gal-1 expression in stromal septae and in neuroblasts. BDNF-mediated activation of TrkB enhanced invasiveness and migration in vitro, which could be impaired by transient transfection using Gal-1-specific siRNA or a neutralizing antibody directed against Gal-1. The addition of recombinant Gal-1 (rGal-1) in the absence of BDNF partially restored migration and invasive capacity. Using the Trk inhibitor K252a, we could show that the upregulation of Gal-1 protein strictly depended on activated TrkB. Our data suggest that targeting Gal-1 might be a promising strategy for the treatment of aggressive NB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Belanis L, Plowman SJ, Rotblat B, Hancock JF, Kloog Y . (2008). Galectin-1 is a novel structural component and a major regulator of h-ras nanoclusters. Mol Biol Cell 19: 1404–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang WF, Liu SY, Fang LY, Lin CN, Wu MH, Chen YC et al. (2008). Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncol 44: 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Cimmino F, Spano D, Capasso M, Zambrano N, Russo R, Zollo M et al. (2007). Comparative proteomic expression profile in all-trans retinoic acid differentiated neuroblastoma cell line. J Proteome Res 6: 2550–2564.

    Article  CAS  PubMed  Google Scholar 

  • Eggert A, Grotzer MA, Zuzak TJ, Wiewrodt BR, Ho R, Ikegaki N et al. (2001). Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res 61: 1314–1319.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • He J, Baum LG . (2004). Presentation of galectin-1 by extracellular matrix triggers T cell death. J Biol Chem 279: 4705–4712.

    Article  CAS  PubMed  Google Scholar 

  • Hecht M, Papoutsi M, Tran HD, Wilting J, Schweigerer L . (2004). Hepatocyte growth factor/c-Met signaling promotes the progression of experimental human neuroblastomas. Cancer Res 64: 6109–6118.

    Article  CAS  PubMed  Google Scholar 

  • Hecht M, Schulte JH, Eggert A, Wilting J, Schweigerer L . (2005). The neurotrophin receptor TrkB cooperates with c-Met in enhancing neuroblastoma invasiveness. Carcinogenesis 26: 2105–2115.

    Article  CAS  PubMed  Google Scholar 

  • Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P et al. (2002). Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res 62: 6462–6466.

    CAS  PubMed  Google Scholar 

  • Hughes RC . (2001). Galectins as modulators of cell adhesion. Biochimie 83: 667–676.

    Article  CAS  PubMed  Google Scholar 

  • Jaboin J, Kim CJ, Kaplan DR, Thiele CJ . (2002). Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res 62: 6756–6763.

    CAS  PubMed  Google Scholar 

  • Jung EJ, Moon HG, Cho BI, Jeong CY, Joo YT, Lee YJ et al. (2007). Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer. Int J Cancer 120: 2331–2338.

    Article  CAS  PubMed  Google Scholar 

  • Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J et al. (2007). The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci USA 104: 13134–13139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Mercier M, Mathieu V, Haibe-Kains B, Bontempi G, Mijatovic T, Decaestecker C et al. (2008). Knocking down galectin 1 in human hs683 glioblastoma cells impairs both angiogenesis and endoplasmic reticulum stress responses. J Neuropathol Exp Neurol 67: 456–469.

    Article  CAS  PubMed  Google Scholar 

  • Liu FT, Rabinovich GA . (2005). Galectins as modulators of tumour progression. Nat Rev Cancer 5: 29–41.

    Article  CAS  PubMed  Google Scholar 

  • Lucarelli E, Kaplan D, Thiele CJ . (1997). Activation of trk-A but not trk-B signal transduction pathway inhibits growth of neuroblastoma cells. Eur J Cancer 33: 2068–2070.

    Article  CAS  PubMed  Google Scholar 

  • Mathieu V, Le Mercier M, De Neve N, Sauvage S, Gras T, Roland I et al. (2007). Galectin-1 knockdown increases sensitivity to temozolomide in a B16F10 mouse metastatic melanoma model. J Invest Dermatol 127: 2399–2410.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ . (1995). Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 55: 1798–1806.

    CAS  PubMed  Google Scholar 

  • Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM . (1993). Association between high levels of expression of the Trk gene and favorable outcome in human neuroblastomas. N Engl J Med 328: 847–854.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM . (1994). Expression and function of Trk-B and BDNF in human neuroblastomas. Mol Cell Biol 14: 759–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paz A, Haklai R, Elad-Sfadia G, Ballan E, Kloog Y . (2001). Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20: 7486–7493.

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich GA . (2005). Galectin-1 as a potential cancer target. Br J Cancer 92: 1188–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodig SJ, Ouyang J, Juszczynski P, Currie T, Law K, Neuberg DS et al. (2008). AP1-dependent galectin-1 expression delineates classical hodgkin and anaplastic large cell lymphomas from other lymphoid malignancies with shared molecular features. Clin Cancer Res 14: 3338–3344.

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein N, Alvarez M, Zwirner NW, Toscano MA, Ilarregui JM, Bravo A et al. (2004). Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell 5: 241–251.

    Article  CAS  PubMed  Google Scholar 

  • Salatino M, Croci DO, Bianco GA, Ilarregui JM, Toscano MA, Rabinovich GA . (2008). Galectin-1 as a potential therapeutic target in autoimmune disorders and cancer. Expert Opin Biol Ther 8: 45–57.

    Article  CAS  PubMed  Google Scholar 

  • Schramm A, Schulte JH, Astrahantseff K, Apostolov O, Limpt V, Sieverts H et al. (2005a). Biological effects of TrkA and TrkB receptor signaling in neuroblastoma. Cancer Lett 228: 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Schramm A, Schulte JH, Klein-Hitpass L, Havers W, Sieverts H, Berwanger B et al. (2005b). Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling. Oncogene 24: 7902–7912.

    Article  CAS  PubMed  Google Scholar 

  • Schulte JH, Kirfel J, Lim S, Schramm A, Friedrichs N, Deubzer HE et al. (2008a). Transcription factor AP2alpha (TFAP2a) regulates differentiation and proliferation of neuroblastoma cells. Cancer Lett 271: 56–63.

    Article  CAS  PubMed  Google Scholar 

  • Schulte JH, Lim S, Schramm A, Friedrichs N, Ora I, Pajtler K et al. (2009). The LSD1 histone demethylase is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res 69: 2065–2071.

    Article  CAS  PubMed  Google Scholar 

  • Schulte JH, Schramm A, Klein-Hitpass L, Klenk M, Wessels H, Hauffa BP et al. (2005). Microarray analysis reveals differential gene expression patterns and regulation of single target genes contributing to the opposing phenotype of TrkA- and TrkB-expressing neuroblastomas. Oncogene 24: 165–177.

    Article  CAS  PubMed  Google Scholar 

  • Sitek B, Apostolov O, Stuhler K, Pfeiffer K, Meyer HE, Eggert A et al. (2005). Identification of dynamic proteome changes upon ligand activation of Trk-receptors using two-dimensional fluorescence difference gel electrophoresis and mass spectrometry. Mol Cell Proteomics 4: 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Stephan H, Zakrzewski JL, Boloni R, Grasemann C, Lohmann DR, Eggert A . (2008). Neurotrophin receptor expression in human primary retinoblastomas and retinoblastoma cell lines. Pediatr Blood Cancer 50: 218–222.

    Article  PubMed  Google Scholar 

  • Tapley P, Lamballe F, Barbacid M . (1992). K252a is a selective inhibitor of the tyrosine protein kinase activity of the trk family of oncogenes and neurotrophin receptors. Oncogene 7: 371–381.

    CAS  PubMed  Google Scholar 

  • Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al. (2000). Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6: 529–535.

    Article  CAS  PubMed  Google Scholar 

  • Thijssen VL, Poirier F, Baum LG, Griffioen AW . (2007). Galectins in the tumor endothelium: opportunities for combined cancer therapy. Blood 110: 2819–2827.

    Article  CAS  PubMed  Google Scholar 

  • Thijssen VL, Postel R, Brandwijk RJ, Dings RP, Nesmelova I, Satijn S et al. (2006). Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci USA 103: 15975–15980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashiro DJ, Liu X-G, Lee CP, Nakagawara A, Ikegaki N, McGregor LM et al. (1997). Expression and function of TrkC in favourable human neuroblastomas. Eur J of Cancer 33: 2054–2057.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the 6th framework program of the European Union, Grant no. 037260 (EET-Pipeline).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Schramm.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimmino, F., Schulte, J., Zollo, M. et al. Galectin-1 is a major effector of TrkB-mediated neuroblastoma aggressiveness. Oncogene 28, 2015–2023 (2009). https://doi.org/10.1038/onc.2009.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.70

Keywords

This article is cited by

Search

Quick links