Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mimicking the BH3 domain to kill cancer cells

Abstract

Cancer cells show deviant behavior that induces apoptotic signaling. To survive, cancer cells typically acquire changes enabling evasion of death signals. One way they do this is by increasing the expression of anti-apoptotic BCL-2 proteins. Anti-apoptotic BCL-2 family proteins antagonize death signaling by forming heterodimers with pro-death proteins. Heterodimer formation occurs through binding of the pro-apoptotic protein's BH3 domain into the hydrophobic cleft of anti-apoptotic proteins. The BH3 mimetics are small molecule antagonists of the anti-apoptotic BCL-2 members that function as competitive inhibitors by binding to the hydrophobic cleft. Under certain conditions, antagonism of anti-apoptotic BCL-2 family proteins can unleash pro-death molecules in cancer cells. Thus, the BH3 mimetics are a new class of cancer drugs that specifically target a mechanism of cancer cell survival to selectively kill cancer cells.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  • Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW . (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9: 423–432.

    CAS  PubMed  Google Scholar 

  • Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L et al. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281: 1674–1677.

    CAS  PubMed  Google Scholar 

  • Becattini B, Kitada S, Leone M, Monosov E, Chandler S, Zhai D et al. (2004). Rational design and real time, in-cell detection of the proapoptotic activity of a novel compound targeting Bcl-X(L). Chem Biol 11: 389–395.

    CAS  PubMed  Google Scholar 

  • Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA et al. (1993). bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597–608.

    CAS  PubMed  Google Scholar 

  • Boyd JM, Gallo GJ, Elangovan B, Houghton AB, Malstrom S, Avery BJ et al. (1995). Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene 11: 1921–1928.

    CAS  PubMed  Google Scholar 

  • Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA et al. (2006). Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9: 351–365.

    CAS  Article  PubMed  Google Scholar 

  • Chauhan D, Velankar M, Brahmandam M, Hideshima T, Podar K, Richardson P et al. (2007). A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene 26: 2374–2380.

    CAS  PubMed  Google Scholar 

  • Chen S, Dai Y, Harada H, Dent P, Grant S . (2007). Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res 67: 782–791.

    CAS  PubMed  Google Scholar 

  • Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T et al. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8: 705–711.

    CAS  PubMed  Google Scholar 

  • Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan GI et al. (1995). Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374: 733–736.

    CAS  PubMed  Google Scholar 

  • Choi SS, Park IC, Yun JW, Sung YC, Hong SI, Shin HS . (1995). A novel Bcl-2 related gene, Bfl-1, is overexpressed in stomach cancer and preferentially expressed in bone marrow. Oncogene 11: 1693–1698.

    CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Cleary ML, Sklar J . (1985). Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 82: 7439–7443.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter FE, Johnson P, Hall P, Pocock C, al Mahdi N, Cowell JK et al. (1994). Antisense oligonucleotides suppress B-cell lymphoma growth in a SCID-hu mouse model. Oncogene 9: 3049–3055.

    CAS  PubMed  Google Scholar 

  • Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T et al. (2001). Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 3: 173–182.

    CAS  PubMed  Google Scholar 

  • Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A . (2007). Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest 117: 112–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del Gaizo Moore V, Schlis KD, Sallan SE, Armstrong SA, Letai A . (2008). BCL-2 dependence and ABT-737 sensitivity in acute lymphoblastic leukemia. Blood 111: 2300–2309.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A . (2007). BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12: 171–185.

    CAS  PubMed  Google Scholar 

  • Eskes R, Desagher S, Antonsson B, Martinou JC . (2000). Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20: 929–935.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M et al. (1992). Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128.

    CAS  PubMed  Google Scholar 

  • Gibson L, Holmgreen SP, Huang DC, Bernard O, Copeland NG, Jenkins NA et al. (1996). bcl-w, a novel member of the bcl-2 family, promotes cell survival. Oncogene 13: 665–675.

    CAS  PubMed  Google Scholar 

  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC . (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855–4878.

    CAS  PubMed  Google Scholar 

  • Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC . (1993). bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82: 1820–1828.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  PubMed  Google Scholar 

  • Hsu SY, Kaipia A, McGee E, Lomeli M, Hsueh AJ . (1997). Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc Natl Acad Sci USA 94: 12401–12406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Sinicrope FA . (2008). BH3 mimetic ABT-737 potentiates TRAIL-mediated apoptotic signaling by unsequestering Bim and Bak in human pancreatic cancer cells. Cancer Res 68: 2944–2951.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inohara N, Ding L, Chen S, Nunez G . (1997). Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L). EMBO J 16: 1686–1694.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al. (2003). Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4: 321–328.

    CAS  PubMed  Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW . (2002). Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153–164.

    CAS  PubMed  Google Scholar 

  • Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, Hsieh JJ et al. (2006). Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8: 1348–1358.

    CAS  PubMed  Google Scholar 

  • Kitada S, Leone M, Sareth S, Zhai D, Reed JC, Pellecchia M . (2003). Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J Med Chem 46: 4259–4264.

    CAS  PubMed  Google Scholar 

  • Klasa RJ, Gillum AM, Klem RE, Frankel SR . (2002). Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev 12: 193–213.

    CAS  PubMed  Google Scholar 

  • Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S et al. (2006). Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10: 375–388.

    CAS  PubMed  Google Scholar 

  • Konopleva M, Watt J, Contractor R, Tsao T, Harris D, Estrov Z et al. (2008). Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15-070 (obatoclax). Cancer Res 68: 3413–3420.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH . (2000). Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7: 1166–1173.

    CAS  PubMed  Google Scholar 

  • Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW . (1993). MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 90: 3516–3520.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kutuk O, Letai A . (2008). Alteration of the mitochondrial apoptotic pathway is key to acquired paclitaxel resistance and can be reversed by ABT-737. Cancer Res 68: 7985–7994.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al. (2005). BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17: 525–535.

    CAS  PubMed  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R et al. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111: 331–342.

    CAS  PubMed  Google Scholar 

  • Lee EF, Czabotar PE, Smith BJ, Deshayes K, Zobel K, Colman PM et al. (2007). Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ 14: 1711–1713.

    CAS  PubMed  Google Scholar 

  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ . (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2: 183–192.

    CAS  PubMed  Google Scholar 

  • Letai A, Sorcinelli MD, Beard C, Korsmeyer SJ . (2004). Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell 6: 241–249.

    CAS  PubMed  Google Scholar 

  • Lin X, Morgan-Lappe S, Huang X, Li L, Zakula DM, Vernetti LA et al. (2007). ′Seed′ analysis of off-target siRNAs reveals an essential role of Mcl-1 in resistance to the small-molecule Bcl-2/Bcl-XL inhibitor ABT-737. Oncogene 26: 3972–3979.

    CAS  PubMed  Google Scholar 

  • Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M et al. (1994). Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13: 1017–1030.

    CAS  PubMed  Google Scholar 

  • Meijerink JP, Mensink EJ, Wang K, Sedlak TW, Sloetjes AW, de Witte T et al. (1998). Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91: 2991–2997.

    CAS  PubMed  Google Scholar 

  • Meijerink JP, Smetsers TF, Sloetjes AW, Linders EH, Mensink EJ . (1995). Bax mutations in cell lines derived from hematological malignancies. Leukemia 9: 1828–1832.

    CAS  PubMed  Google Scholar 

  • Miyashita T, Reed JC . (1993). Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81: 151–157.

    CAS  PubMed  Google Scholar 

  • Mohammad RM, Goustin AS, Aboukameel A, Chen B, Banerjee S, Wang G et al. (2007). Preclinical studies of TW-37, a new nonpeptidic small-molecule inhibitor of Bcl-2, in diffuse large cell lymphoma xenograft model reveal drug action on both Bcl-2 and Mcl-1. Clin Cancer Res 13: 2226–2235.

    CAS  PubMed  Google Scholar 

  • Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS et al. (1996). X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381: 335–341.

    CAS  PubMed  Google Scholar 

  • Nakano K, Vousden KH . (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7: 683–694.

    CAS  PubMed  Google Scholar 

  • Nakashima T, Miura M, Hara M . (2000). Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res 60: 1229–1235.

    CAS  PubMed  Google Scholar 

  • Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR et al. (2007). Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 104: 19512–19517.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O′Brien SM, Cunningham CC, Golenkov AK, Turkina AG, Novick SC, Rai KR . (2005). Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J Clin Oncol 23: 7697–7702.

    PubMed  Google Scholar 

  • O′Connor L, Strasser A, O′Reilly LA, Hausmann G, Adams JM, Cory S et al. (1998). Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17: 384–395.

    PubMed  PubMed Central  Google Scholar 

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288: 1053–1058.

    CAS  PubMed  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435: 677–681.

    CAS  PubMed  Google Scholar 

  • Oltvai ZN, Milliman CL, Korsmeyer SJ . (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619.

    CAS  PubMed  Google Scholar 

  • Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A . (1999). The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3: 287–296.

    CAS  PubMed  Google Scholar 

  • Puthalakath H, Villunger A, O’Reilly LA, Beaumont JG, Coultas L, Cheney RE et al. (2001). Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293: 1829–1832.

    CAS  PubMed  Google Scholar 

  • Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC et al. (1997). Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275: 967–969.

    CAS  PubMed  Google Scholar 

  • Rao PH, Houldsworth J, Dyomina K, Parsa NZ, Cigudosa JC, Louie DC et al. (1998). Chromosomal and gene amplification in diffuse large B-cell lymphoma. Blood 92: 234–240.

    CAS  PubMed  Google Scholar 

  • Reed JC . (2003). Apoptosis-targeted therapies for cancer. Cancer Cell 3: 17–22.

    CAS  PubMed  Google Scholar 

  • Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M et al. (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275: 983–986.

    CAS  PubMed  Google Scholar 

  • Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A et al. (2003). Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 17: 2233–2238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoemaker AR, Mitten MJ, Adickes J, Ackler S, Refici M, Ferguson D et al. (2008). Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clin Cancer Res 14: 3268–3277.

    CAS  PubMed  Google Scholar 

  • Strasser A, Harris AW, Bath ML, Cory S . (1990). Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348: 331–333.

    CAS  PubMed  Google Scholar 

  • Tagscherer KE, Fassl A, Campos B, Farhadi M, Kraemer A, Bock BC et al. (2008). Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene 27: 6646–6656.

    CAS  PubMed  Google Scholar 

  • Takahashi M, Saito H, Atsukawa K, Ebinuma H, Okuyama T, Ishii H . (2003). Bcl-2 prevents doxorubicin-induced apoptosis of human liver cancer cells. Hepatol Res 25: 192–201.

    CAS  PubMed  Google Scholar 

  • Trudel S, Li ZH, Rauw J, Tiedemann RE, Wen XY, Stewart AK . (2007a). Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood 109: 5430–5438.

    CAS  PubMed  Google Scholar 

  • Trudel S, Stewart AK, Li Z, Shu Y, Liang SB, Trieu Y et al. (2007b). The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan. Clin Cancer Res 13: 621–629.

    CAS  PubMed  Google Scholar 

  • Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S et al. (2008). ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68: 3421–3428.

    CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM . (1985). The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229: 1390–1393.

    CAS  PubMed  Google Scholar 

  • Tzung SP, Kim KM, Basanez G, Giedt CD, Simon J, Zimmerberg J et al. (2001). Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3: 183–191.

    CAS  PubMed  Google Scholar 

  • van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. (2006). The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10: 389–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaux DL, Cory S, Adams JM . (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335: 440–442.

    CAS  PubMed  Google Scholar 

  • Verhaegen M, Bauer JA, Martin de la Vega C, Wang G, Wolter KG, Brenner JC et al. (2006). A novel BH3 mimetic reveals a mitogen-activated protein kinase-dependent mechanism of melanoma cell death controlled by p53 and reactive oxygen species. Cancer Res 66: 11348–11359.

    CAS  PubMed  Google Scholar 

  • Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ et al. (2003). p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302: 1036–1038.

    CAS  PubMed  Google Scholar 

  • Vogler M, Dinsdale D, Sun XM, Young KW, Butterworth M, Nicotera P et al. (2008). A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells. Cell Death Differ 15: 820–830.

    CAS  PubMed  Google Scholar 

  • Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM et al. (2000). Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 97: 7124–7129.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ . (1996). BID: a novel BH3 domain-only death agonist. Genes Dev 10: 2859–2869.

    CAS  PubMed  Google Scholar 

  • Wang Z, Song W, Aboukameel A, Mohammad M, Wang G, Banerjee S et al. (2008). TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and invasion in pancreatic cancer. Int J Cancer 123: 958–966.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M et al. (2000). tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14: 2060–2071.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss LM, Warnke RA, Sklar J, Cleary ML . (1987). Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med 317: 1185–1189.

    CAS  PubMed  Google Scholar 

  • Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI et al. (2005). Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19: 1294–1305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE et al. (2007). Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315: 856–859.

    CAS  PubMed  Google Scholar 

  • Wilson WH, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, Dunleavy K et al. (2008). A phase 1 study evaluating the safety, pharmacokinetics, and efficacy of ABT-263 in subjects with refractory or relapsed lymphoid malignancies. J Clin Oncol 26: 8511.

    Google Scholar 

  • Witham J, Valenti MR, De-Haven-Brandon AK, Vidot S, Eccles SA, Kaye SB et al. (2007). The Bcl-2/Bcl-XL family inhibitor ABT-737 sensitizes ovarian cancer cells to carboplatin. Clin Cancer Res 13: 7191–7198.

    CAS  PubMed  Google Scholar 

  • Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ . (1995). Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80: 285–291.

    CAS  PubMed  Google Scholar 

  • Zha H, Reed JC . (1997). Heterodimerization-independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells. J Biol Chem 272: 31482–31488.

    CAS  PubMed  Google Scholar 

  • Zhang L, Insel PA . (2001). Bcl-2 protects lymphoma cells from apoptosis but not growth arrest promoted by cAMP and dexamethasone. Am J Physiol Cell Physiol 281: C1642–C1647.

    CAS  PubMed  Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X . (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413.

    CAS  PubMed  Google Scholar 

  • Zou H, Li Y, Liu X, Wang X . (1999). An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274: 11549–11556.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Letai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chonghaile, T., Letai, A. Mimicking the BH3 domain to kill cancer cells. Oncogene 27, S149–S157 (2008). https://doi.org/10.1038/onc.2009.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.52

Keywords

  • BH3 mimetic
  • Bcl-2
  • apoptosis
  • cancer
  • drug resistance and ABT-737

Further reading

Search

Quick links