Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Myc proteins as therapeutic targets

Abstract

Myc proteins (c-myc, Mycn and Mycl) target proliferative and apoptotic pathways vital for progression in cancer. Amplification of the MYCN gene has emerged as one of the clearest indicators of aggressive and chemotherapy-refractory disease in children with neuroblastoma, the most common extracranial solid tumor of childhood. Phosphorylation and ubiquitin-mediated modulation of Myc protein influence stability and represent potential targets for therapeutic intervention. Phosphorylation of Myc proteins is controlled in-part by the receptor tyrosine kinase/phosphatidylinositol 3-kinase/Akt/mTOR signaling, with additional contributions from Aurora A kinase. Myc proteins regulate apoptosis in part through interactions with the p53/Mdm2/Arf signaling pathway. Mutation in p53 is commonly observed in patients with relapsed neuroblastoma, contributing to both biology and therapeutic resistance. This review examines Myc function and regulation in neuroblastoma, and discusses emerging therapies that target Mycn.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Alaminos M, Mora J, Cheung N-KV, Smith A, Qin J, Chen L et al. (2003). Genome-wide analysis of gene expression associated with MYCN in human neuroblastoma. Cancer Res 63: 4538–4546.

    CAS  PubMed  Google Scholar 

  • Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI, Land H . (1992). Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature 359: 423–426.

    CAS  PubMed  Google Scholar 

  • Amente S, Gargano B, Diolaiti D, Della Valle G, Lania L, Majello B . (2007). p14ARF interacts with N-Myc and inhibits its transcriptional activity. FEBS Lett 581: 821–825.

    CAS  PubMed  Google Scholar 

  • Armstrong BC, Krystal GW . (1992). Isolation and characterization of complementary DNA for N-cym, a gene encoded by the DNA strand opposite to N-myc. Cell Growth Differ 3: 385–390.

    CAS  PubMed  Google Scholar 

  • Arnold HK, Sears RC . (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol 26: 2832–2844.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold HK, Zhang X, Daniel CJ, Tibbitts D, Escamilla-Powers J, Farrell A et al. (2009). The Axin1 scaffold protein promotes formation of a degradation complex for c-Myc. EMBO J 28: 500–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Askew DS, Ashmun RA, Simmons BC, Cleveland JL . (1991). Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6: 1915–1922.

    CAS  PubMed  Google Scholar 

  • Attiyeh EF, London WB, Mossé YP, Wang Q, Winter C, Khazi D et al. (2005). Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med 353: 2243–2253.

    CAS  PubMed  Google Scholar 

  • Ayer DE, Kretzner L, Eisenman RN . (1993). Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72: 211–222.

    CAS  PubMed  Google Scholar 

  • Bahram F, von der Lehr N, Cetinkaya C, Larsson LG . (2000). c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95: 2104–2110.

    CAS  PubMed  Google Scholar 

  • Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J . (2000). Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 96: 4319–4327.

    CAS  PubMed  Google Scholar 

  • Barbieri E, Mehta P, Chen Z, Zhang L, Slack A, Berg S et al. (2006). MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Mol Cancer Ther 5: 2358–2365.

    CAS  PubMed  Google Scholar 

  • Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E et al. (2008). Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456: 971–975.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bell E, Lunec J, Tweddle DA . (2007). Cell cycle regulation targets of MYCN identified by gene expression microarrays. Cell Cycle 6: 1249–1256.

    CAS  PubMed  Google Scholar 

  • Benassi B, Fanciulli M, Fiorentino F, Porrello A, Chiorino G, Loda M et al. (2006). c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell 21: 509–519.

    CAS  PubMed  Google Scholar 

  • Berberich SJ, Cole MD . (1992). Casein kinase II inhibits the DNA-binding activity of Max homodimers but not Myc/Max heterodimers. Genes Dev 6: 166–176.

    CAS  PubMed  Google Scholar 

  • Berg T . (2008). Inhibition of transcription factors with small organic molecules. Curr Opin Chem Biol 12: 464–471.

    CAS  PubMed  Google Scholar 

  • Berwanger B, Hartmann O, Bergmann E, Bernard S, Nielsen D, Krause M et al. (2002). Loss of a FYN-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma. Cancer Cell 2: 377–386.

    CAS  PubMed  Google Scholar 

  • Bettess MD, Dubois N, Murphy MJ, Dubey C, Roger C, Robine S et al. (2005). c-Myc is required for the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal epithelium. Mol Cell Biol 25: 7868–7878.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I . (1993). Point mutations in the c-Myc transactivation domain are common in Burkitt′s lymphoma and mouse plasmacytomas. Nat Genet 5: 56–61.

    CAS  PubMed  Google Scholar 

  • Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H . (1990). Sequence-specific DNA binding by the c-Myc protein. Science 250: 1149–1151.

    CAS  PubMed  Google Scholar 

  • Blackwell TK, Huang J, Ma A, Kretzner L, Alt FW, Eisenman RN et al. (1993). Binding of myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol 13: 5216–5224.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blackwood EM, Eisenman RN . (1991). Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251: 1211–1217.

    CAS  PubMed  Google Scholar 

  • Blackwood EM, Lüscher B, Eisenman RN . (1992). Myc and Max associate in vivo. Genes Dev 6: 71–80.

    CAS  PubMed  Google Scholar 

  • Boon K, Caron HN, van Asperen R, Valentijn L, Hermus MC, van Sluis P et al. (2001). N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J 20: 1383–1393.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchard C, Dittrich O, Kiermaier A, Dohmann K, Menkel A, Eilers M et al. (2001). Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev 15: 2042–2047.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bown N, Cotterill S, Lastowska M, O′Neill S, Pearson AD, Plantaz D et al. (1999). Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med 340: 1954–1961.

    CAS  PubMed  Google Scholar 

  • Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM . (1984). Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124.

    CAS  PubMed  Google Scholar 

  • Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR et al. (2009). Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 15: 3244–3250.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks T, Hurley L . (2009). The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nat Rev Cancer 9: 849–861.

    CAS  PubMed  Google Scholar 

  • Carr J, Bell E, Pearson ADJ, Kees UR, Beris H, Lunec J et al. (2006). Increased frequency of aberrations in the p53/MDM2/p14(ARF) pathway in neuroblastoma cell lines established at relapse. Cancer Res 66: 2138–2145.

    CAS  PubMed  Google Scholar 

  • Chan HS, Gallie BL, DeBoer G, Haddad G, Ikegaki N, Dimitroulakos J et al. (1997). MYCN protein expression as a predictor of neuroblastoma prognosis. Clin Cancer Res 3: 1699–1706.

    CAS  PubMed  Google Scholar 

  • Chen Q-R, Bilke S, Wei JS, Whiteford CC, Cenacchi N, Krasnoselsky AL et al. (2004). cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma. BMC Genomics 5: 70.

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M et al. (2008). Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455: 971–974.

    CAS  PubMed  Google Scholar 

  • Chen Z, Lin Y, Barbieri E, Burlingame S, Hicks J, Ludwig A et al. (2009). Mdm2 deficiency suppresses MYCN-driven neuroblastoma tumorigenesis in vivo. Neoplasia 11: 753–762.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng AJ, Cheng NC, Ford J, Smith J, Murray JE, Flemming C et al. (2007). Cell lines from MYCN transgenic murine tumours reflect the molecular and biological characteristics of human neuroblastoma. Eur J Cancer 43: 1467–1475.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chesler L, Schlieve C, Goldenberg DD, Kenney A, Kim G, McMillan A et al. (2006). Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn protein and blocks malignant progression in neuroblastoma. Cancer Res 66: 8139–8146.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chesler L, Goldenberg DD, Seales IT, Satchi-Fainaro R, Grimmer M, Collins R et al. (2007). Malignant progression and blockade of angiogenesis in a murine transgenic model of neuroblastoma. Cancer Res 67: 9435–9442.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chesler L, Goldenberg DD, Collins R, Grimmer M, Kim GE, Tihan T et al. (2008). Chemotherapy-induced apoptosis in a transgenic model of neuroblastoma proceeds through p53 induction. Neoplasia 10: 1268–1274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G . (2008). The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8: 11–23.

    CAS  PubMed  Google Scholar 

  • Clausen N, Andersson P, Tommerup N . (1989). Familial occurrence of neuroblastoma, von Recklinghausen′s neurofibromatosis, Hirschsprung's agangliosis and jaw-winking syndrome. Acta Paediatr Scand 78: 736–741.

    CAS  PubMed  Google Scholar 

  • Cobbold LC, Spriggs KA, Haines SJ, Dobbyn HC, Hayes C, de Moor CH et al. (2008). Identification of internal ribosome entry segment (IRES)-trans-acting factors for the Myc family of IRESs. Mol Cell Biol 28: 40–49.

    CAS  PubMed  Google Scholar 

  • Cohn SL, London WB, Huang D, Katzenstein HM, Salwen HR, Reinhart T et al. (2000). MYCN expression is not prognostic of adverse outcome in advanced-stage neuroblastoma with nonamplified MYCN. J Clin Oncol 18: 3604–3613.

    CAS  PubMed  Google Scholar 

  • Cole MD, Cowling VH . (2008). Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol 9: 810–815.

    CAS  PubMed  Google Scholar 

  • Cotterman R, Knoepfler PS . (2009). N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b. PLoS One 4: e5799.

    PubMed  PubMed Central  Google Scholar 

  • Coutts AS, Adams CJ, La Thangue NB . (2009). p53 ubiquitination by Mdm2: a never ending tail? DNA Repair (Amst) 8: 483–490.

    CAS  Google Scholar 

  • Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M et al. (2007). Non-transcriptional control of DNA replication by c-Myc. Nature 448: 445–451.

    CAS  PubMed  Google Scholar 

  • Downs KM, Martin GR, Bishop JM . (1989). Contrasting patterns of myc and N-myc expression during gastrulation of the mouse embryo. Genes Dev 3: 860–869.

    CAS  PubMed  Google Scholar 

  • Engelman JA . (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9: 550–562.

    CAS  PubMed  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M et al. (1992). Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128.

    CAS  PubMed  Google Scholar 

  • Farnham PJ . (2009). Insights from genomic profiling of transcription factors. Nat Rev Genet 10: 605–616.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D et al. (2009). Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7: e38.

    PubMed  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. (2003). Genomic targets of the human c-Myc protein. Genes Dev 17: 1115–1129.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B . (2001). Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 15: 2069–2082.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fulda S, Lutz W, Schwab M, Debatin KM . (1999). MycN sensitizes neuroblastoma cells for drug-induced apoptosis. Oncogene 18: 1479–1486.

    CAS  PubMed  Google Scholar 

  • Fulda S . (2009). The PI3K/Akt/mTOR pathway as therapeutic target in neuroblastoma. Curr Cancer Drug Targets 9: 729–737.

    CAS  PubMed  Google Scholar 

  • Garcia-Echeverria C, Sellers WR . (2008). Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27: 5511–5526.

    CAS  PubMed  Google Scholar 

  • Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PN, Gandara DR . (2008). Aurora kinases as anticancer drug targets. Clin Cancer Res 14: 1639–1648.

    CAS  PubMed  Google Scholar 

  • George RE, Sanda T, Hanna M, Fröhling S, Luther W, Zhang J et al. (2008). Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455: 975–978.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK et al. (2001). Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15: 2852–2864.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grandori C, Cowley SM, James LP, Eisenman RN . (2000). The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16: 653–699.

    CAS  PubMed  Google Scholar 

  • Gregory MA, Hann SR . (2000). c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol 20: 2423–2435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall′ Olio V et al. (2006). Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 8: 764–770.

    CAS  PubMed  Google Scholar 

  • Guo C, White PS, Weiss MJ, Hogarty MD, Thompson PM, Stram DO et al. (1999). Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene 18: 4948–4957.

    CAS  PubMed  Google Scholar 

  • Hackett CS, Hodgson JG, Law ME, Fridlyand J, Osoegawa K, de Jong PJ et al. (2003). Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in human tumors. Cancer Res 63: 5266–5273.

    CAS  PubMed  Google Scholar 

  • Hartley D, Cooper GM . (2002). Role of mTOR in the degradation of IRS-1: regulation of PP2A activity. J Cell Biochem 85: 304–314.

    CAS  PubMed  Google Scholar 

  • Henriksson M, Bakardjiev A, Klein G, Lüscher B . (1993). Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene 8: 3199–3209.

    CAS  PubMed  Google Scholar 

  • Herbst A, Salghetti SE, Kim SY, Tansey WP . (2004). Multiple cell-type-specific elements regulate Myc protein stability. Oncogene 23: 3863–3871.

    CAS  PubMed  Google Scholar 

  • Herold S, Hock A, Herkert B, Berns K, Mullenders J, Beijersbergen R et al. (2008). Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1. EMBO J 27: 2851–2861.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herold S, Herkert B, Eilers M . (2009). Facilitating replication under stress: an oncogenic function of MYC? Nat Rev Cancer 9: 441–444.

    CAS  PubMed  Google Scholar 

  • Hirning U, Schmid P, Schulz WA, Rettenberger G, Hameister H . (1991). A comparative analysis of N-myc and c-myc expression and cellular proliferation in mouse organogenesis. Mech Dev 33: 119–125.

    CAS  PubMed  Google Scholar 

  • Hirvonen H, Mäkelä TP, Sandberg M, Kalimo H, Vuorio E, Alitalo K . (1990). Expression of the myc proto-oncogenes in developing human fetal brain. Oncogene 5: 1787–1797.

    CAS  PubMed  Google Scholar 

  • Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P et al. (2002). Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res 62: 6462–6466.

    CAS  PubMed  Google Scholar 

  • Hoffman B, Liebermann DA . (2008). Apoptotic signaling by c-MYC. Oncogene 27: 6462–6472.

    CAS  PubMed  Google Scholar 

  • Hossain MS, Ozaki T, Wang H, Nakagawa A, Takenobu H, Ohira M et al. (2008). N-MYC promotes cell proliferation through a direct transactivation of neuronal leucine-rich repeat protein-1 (NLRR1) gene in neuroblastoma. Oncogene 27: 6075–6082.

    CAS  PubMed  Google Scholar 

  • Houghton PJ, Morton CL, Kolb EA, Gorlick R, Lock R, Carol H et al. (2008). Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer 50: 799–805.

    PubMed  Google Scholar 

  • Hurlin PJ, Quéva C, Koskinen PJ, Steingrímsson E, Ayer DE, Copeland NG et al. (1995). Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J 14: 5646–5659.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurlin PJ, Quéva C, Eisenman RN . (1997). Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev 11: 44–58.

    CAS  PubMed  Google Scholar 

  • Ikegaki N, Gotoh T, Kung B, Riceberg JS, Kim DY, Zhao H et al. (2007). De novo identification of MIZ-1 (ZBTB17) encoding a MYC-interacting zinc-finger protein as a new favorable neuroblastoma gene. Clin Cancer Res 13: 6001–6009.

    CAS  PubMed  Google Scholar 

  • Inge TH, Casson LK, Priebe W, Trent JO, Georgeson KE, Miller DM et al. (2002). Importance of Sp1 consensus motifs in the MYCN promoter. Surgery 132: 232–238.

    PubMed  Google Scholar 

  • Jacobs JFM, van Bokhoven H, van Leeuwen FN, Hulsbergen-van de Kaa CA, de Vries IJM, Adema GJ et al. (2009). Regulation of MYCN expression in human neuroblastoma cells. BMC Cancer 9: 239.

    PubMed  PubMed Central  Google Scholar 

  • Janoueix-Lerosey I, Lequin D, Brugières L, Ribeiro A, de Pontual L, Combaret V et al. (2008). Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455: 967–970.

    CAS  PubMed  Google Scholar 

  • Johnsen JI, Segerström L, Orrego A, Elfman L, Henriksson M, KÃ¥gedal B et al. (2008). Inhibitors of mammalian target of rapamycin downregulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo. Oncogene 27: 2910–2922.

    CAS  PubMed  Google Scholar 

  • Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ . (1998). Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95: 8292–8297.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanemaru KK, Tuthill MC, Takeuchi KK, Sidell N, Wada RK . (2008). Retinoic acid induced downregulation of MYCN is not mediated through changes in Sp1/Sp3. Pediatr Blood Cancer 50: 806–811.

    PubMed  Google Scholar 

  • Kang J, Rychahou PG, Ishola TA, Mourot JM, Evers BM, Chung DH . (2008). N-myc is a novel regulator of PI3K-mediated VEGF expression in neuroblastoma. Oncogene 27: 3999–4007.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato GJ, Lee WM, Chen LL, Dang CV . (1992). Max: functional domains and interaction with c-Myc. Genes Dev 6: 81–92.

    CAS  PubMed  Google Scholar 

  • Kenney AM, Cole MD, Rowitch DH . (2003). Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130: 15–28.

    CAS  PubMed  Google Scholar 

  • Kenney AM, Widlund HR, Rowitch DH . (2004). Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131: 217–228.

    CAS  PubMed  Google Scholar 

  • Keshelava N, Seeger RC, Reynolds CP . (1997). Drug resistance in human neuroblastoma cell lines correlates with clinical therapy. Eur J Cancer 33: 2002–2006.

    CAS  PubMed  Google Scholar 

  • Keshelava N, Seeger RC, Groshen S, Reynolds CP . (1998). Drug resistance patterns of human neuroblastoma cell lines derived from patients at different phases of therapy. Cancer Res 58: 5396–5405.

    CAS  PubMed  Google Scholar 

  • Keshelava N, Zuo JJ, Waidyaratne NS, Triche TJ, Reynolds CP . (2000). p53 mutations and loss of p53 function confer multidrug resistance in neuroblastoma. Med Pediatr Oncol 35: 563–568.

    CAS  PubMed  Google Scholar 

  • Kim J, Lee J-h, Iyer VR . (2008). Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One 3: e1798.

    PubMed  PubMed Central  Google Scholar 

  • Knoepfler PS, Cheng PF, Eisenman RN . (2002). N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16: 2699–2712.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koppen A, Ait-Aissa R, Hopman S, Koster J, Haneveld F, Versteeg R et al. (2007). Dickkopf-1 is down-regulated by MYCN and inhibits neuroblastoma cell proliferation. Cancer Lett 256: 218–228.

    CAS  PubMed  Google Scholar 

  • Kramps C, Strieder V, Sapetschnig A, Suske G, Lutz W . (2004). E2F and Sp1/Sp3 Synergize but are not sufficient to activate the MYCN gene in neuroblastomas. J Biol Chem 279: 5110–5117.

    CAS  PubMed  Google Scholar 

  • Kretzner L, Blackwood EM, Eisenman RN . (1992). Myc and Max proteins possess distinct transcriptional activities. Nature 359: 426–429.

    CAS  PubMed  Google Scholar 

  • Krystal GW, Armstrong BC, Battey JF . (1990). N-myc mRNA forms an RNA-RNA duplex with endogenous antisense transcripts. Mol Cell Biol 10: 4180–4191.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Morris SW . (2008). Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med Res Rev 28: 372–412.

    CAS  PubMed  Google Scholar 

  • Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B . (2003). A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci USA 100: 8164–8169.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Hann S . (2009). The Myc-nucleophosmin-ARF network: a complex web unveiled. Cell Cycle 8: 2703–2707.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin AW, Lowe SW . (2001). Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation. Proc Natl Acad Sci USA 98: 5025–5030.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Liu PY, Tee AEL, Haber M, Norris MD, Gleave ME et al. (2009). Over-expression of clusterin is a resistance factor to the anti-cancer effect of histone deacetylase inhibitors. Eur J Cancer 45: 1846–1854.

    CAS  PubMed  Google Scholar 

  • Lutterbach B, Hann SR . (1994). Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Mol Cell Biol 14: 5510–5522.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutterbach B, Hann SR . (1999). c-Myc transactivation domain-associated kinases: questionable role for map kinases in c-Myc phosphorylation. J Cell Biochem 72: 483–491.

    CAS  PubMed  Google Scholar 

  • Ma XM, Blenis J . (2009). Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10: 307–318.

    PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X . (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17: 9–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maestro R, Dei Tos AP, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L et al. (1999). Twist is a potential oncogene that inhibits apoptosis. Genes Dev 13: 2207–2217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manohar CF, Bray JA, Salwen HR, Madafiglio J, Cheng A, Flemming C et al. (2004). MYCN-mediated regulation of the MRP1 promoter in human neuroblastoma. Oncogene 23: 753–762.

    CAS  PubMed  Google Scholar 

  • Mao DYL, Watson JD, Yan PS, Barsyte-Lovejoy D, Khosravi F, Wong WW-L et al. (2003). Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr Biol 13: 882–886.

    CAS  PubMed  Google Scholar 

  • Maris JM, Courtright J, Houghton PJ, Morton CL, Kolb EA, Lock R et al. (2008a). Initial testing (stage 1) of sunitinib by the pediatric preclinical testing program. Pediatr Blood Cancer 51: 42–48.

    PubMed  Google Scholar 

  • Maris JM, Mosse YP, Bradfield JP, Hou C, Monni S, Scott RH et al. (2008b). Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N Engl J Med 358: 2585–2593.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maris JM . (2009). Unholy matrimony: Aurora A and N-Myc as malignant partners in neuroblastoma. Cancer Cell 15: 5–6.

    CAS  PubMed  Google Scholar 

  • Marqués M, Kumar A, Cortés I, Gonzalez-García A, Hernández C, Moreno-Ortiz MC et al. (2008). Phosphoinositide 3-kinases p110alpha and p110beta regulate cell cycle entry, exhibiting distinct activation kinetics in G1 phase. Mol Cell Biol 28: 2803–2814.

    PubMed  PubMed Central  Google Scholar 

  • Martinato F, Cesaroni M, Amati B, Guccione E . (2008). Analysis of Myc-induced histone modifications on target chromatin. PLoS One 3: e3650.

    PubMed  PubMed Central  Google Scholar 

  • Martins RAP, Zindy F, Donovan S, Zhang J, Pounds S, Wey A et al. (2008). N-myc coordinates retinal growth with eye size during mouse development. Genes Dev 22: 179–193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marzec M, Kasprzycka M, Liu X, El-Salem M, Halasa K, Raghunath PN et al. (2007). Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene 26: 5606–5614.

    CAS  PubMed  Google Scholar 

  • McDermott U, Iafrate AJ, Gray NS, Shioda T, Classon M, Maheswaran S et al. (2008). Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res 68: 3389–3395.

    CAS  PubMed  Google Scholar 

  • McMahon SB, Wood MA, Cole MD . (2000). The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol 20: 556–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Memmott RM, Dennis PA . (2009). Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal 21: 656–664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer N, Penn LZ . (2008). Reflecting on 25 years with MYC. Nat Rev Cancer 8: 976–990.

    CAS  PubMed  Google Scholar 

  • Midgley CA, Desterro JM, Saville MK, Howard S, Sparks A, Hay RT et al. (2000). An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene 19: 2312–2323.

    CAS  PubMed  Google Scholar 

  • Mill P, Mo R, Hu MC, Dagnino L, Rosenblum ND, Hui C-C . (2005). Shh controls epithelial proliferation via independent pathways that converge on N-Myc. Dev Cell 9: 293–303.

    CAS  PubMed  Google Scholar 

  • Moore HC, Wood KM, Jackson MS, Lastowska MA, Hall D, Imrie H et al. (2008). Histological profile of tumours from MYCN transgenic mice. J Clin Pathol 61: 1098–1103.

    CAS  PubMed  Google Scholar 

  • Mossé Y, Wood A, Maris J . (2009). Inhibition of ALK signaling for cancer therapy. Clin Cancer Res 15: 5609–5614.

    PubMed  Google Scholar 

  • Mosse YP, Laudenslager M, Khazi D, Carlisle AJ, Winter CL, Rappaport E et al. (2004). Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum Genet 75: 727–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF et al. (2008). Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455: 930–935.

    PubMed  PubMed Central  Google Scholar 

  • Mugrauer G, Alt FW, Ekblom P . (1988). N-myc proto-oncogene expression during organogenesis in the developing mouse as revealed by in situ hybridization. J Cell Biol 107: 1325–1335.

    CAS  PubMed  Google Scholar 

  • Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA et al. (2008). Distinct thresholds govern Myc's biological output in vivo. Cancer Cell 14: 447–457.

    CAS  PubMed  Google Scholar 

  • Norris MD, Burkhart CA, Marshall GM, Weiss WA, Haber M . (2000). Expression of N-myc and MRP genes and their relationship to N-myc gene dosage and tumor formation in a murine neuroblastoma model. Med Pediatr Oncol 35: 585–589.

    CAS  PubMed  Google Scholar 

  • Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R et al. (2006). Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 24: 5070–5078.

    CAS  PubMed  Google Scholar 

  • Ohira M, Oba S, Nakamura Y, Isogai E, Kaneko S, Nakagawa A et al. (2005). Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell 7: 337–350.

    CAS  PubMed  Google Scholar 

  • Okubo T, Knoepfler PS, Eisenman RN, Hogan BLM . (2005). Nmyc plays an essential role during lung development as a dosage-sensitive regulator of progenitor cell proliferation and differentiation. Development 132: 1363–1374.

    CAS  PubMed  Google Scholar 

  • Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B . (1993). Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362: 857–860.

    CAS  PubMed  Google Scholar 

  • Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM et al. (2003). Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci USA 100: 7331–7336.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Opel D, Poremba C, Simon T, Debatin K-M, Fulda S . (2007). Activation of Akt predicts poor outcome in neuroblastoma. Cancer Res 67: 735–745.

    CAS  PubMed  Google Scholar 

  • Ota S, Zhou Z-Q, Keene DR, Knoepfler P, Hurlin PJ . (2007). Activities of N-Myc in the developing limb link control of skeletal size with digit separation. Development 134: 1583–1592.

    CAS  PubMed  Google Scholar 

  • Otto T, Horn S, Brockmann M, Eilers U, Schüttrumpf L, Popov N et al. (2009). Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 15: 67–78.

    CAS  PubMed  Google Scholar 

  • Paffhausen T, Schwab M, Westermann F . (2007). Targeted MYCN expression affects cytotoxic potential of chemotherapeutic drugs in neuroblastoma cells. Cancer Lett 250: 17–24.

    CAS  PubMed  Google Scholar 

  • Park JR, Eggert A, Caron H . (2008). Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am 55: 97–120.

    PubMed  Google Scholar 

  • Patel JH, Loboda AP, Showe MK, Showe LC, McMahon SB . (2004). Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 4: 562–568.

    CAS  PubMed  Google Scholar 

  • Payne GS, Bishop JM, Varmus HE . (1982). Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295: 209–214.

    CAS  PubMed  Google Scholar 

  • Peterson RT, Desai BN, Hardwick JS, Schreiber SL . (1999). Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc Natl Acad Sci USA 96: 4438–4442.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prendergast GC, Lawe D, Ziff EB . (1991). Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 65: 395–407.

    CAS  PubMed  Google Scholar 

  • Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodgett JR . (1994). Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 9: 59–70.

    CAS  PubMed  Google Scholar 

  • Qi Y, Gregory MA, Li Z, Brousal JP, West K, Hann SR . (2004). p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431: 712–717.

    CAS  PubMed  Google Scholar 

  • Raabe EH, Laudenslager M, Winter C, Wasserman N, Cole K, Laquaglia M et al. (2008). Prevalence and functional consequence of PHOX2B mutations in neuroblastoma. Oncogene 27: 469–476.

    CAS  PubMed  Google Scholar 

  • Riley RD, Heney D, Jones DR, Sutton AJ, Lambert PC, Abrams KR et al. (2004). A systematic review of molecular and biological tumor markers in neuroblastoma. Clin Cancer Res 10: 4–12.

    CAS  PubMed  Google Scholar 

  • Rohrer T, Trachsel D, Engelcke G, Hammer J . (2002). Congenital central hypoventilation syndrome associated with Hirschsprung's disease and neuroblastoma: case of multiple neurocristopathies. Pediatr Pulmonol 33: 71–76.

    PubMed  Google Scholar 

  • Ruggero D . (2009). The Role of Myc-Induced Protein Synthesis in Cancer. Cancer Res 69: 8839–8843.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saksela K, Mäkelä TP, Hughes K, Woodgett JR, Alitalo K . (1992). Activation of protein kinase C increases phosphorylation of the L-myc trans-activator domain at a GSK-3 target site. Oncogene 7: 347–353.

    CAS  PubMed  Google Scholar 

  • Schramm A, Schulte JH, Klein-Hitpass L, Havers W, Sieverts H, Berwanger B et al. (2005). Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling. Oncogene 24: 7902–7912.

    CAS  PubMed  Google Scholar 

  • Schramm A, Mierswa I, Kaderali L, Morik K, Eggert A, Schulte JH . (2009). Reanalysis of neuroblastoma expression profiling data using improved methodology and extended follow-up increases validity of outcome prediction. Cancer Lett 282: 55–62.

    CAS  PubMed  Google Scholar 

  • Schulte JH, Horn S, Schlierf S, Schramm A, Heukamp LC, Christiansen H et al. (2009). MicroRNAs in the pathogenesis of neuroblastoma. Cancer Lett 274: 10–15.

    CAS  PubMed  Google Scholar 

  • Sears R, Leone G, DeGregori J, Nevins JR . (1999). Ras enhances Myc protein stability. Mol Cell 3: 169–179.

    CAS  PubMed  Google Scholar 

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14: 2501–2514.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY et al. (1985). Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313: 1111–1116.

    CAS  PubMed  Google Scholar 

  • Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J . (2001). TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3: 400–408.

    CAS  PubMed  Google Scholar 

  • Shang X, Burlingame S, Okcu M, Ge N, Russell H, Egler R et al. (2009). Aurora A is a negative prognostic factor and a new therapeutic target in human neuroblastoma. Mol Cancer Ther 8: 2461–2469.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Glynn JM, Guilbert LJ, Cotter TG, Bissonnette RP, Green DR . (1992). Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science 257: 212–214.

    CAS  PubMed  Google Scholar 

  • Sjostrom SK, Finn G, Hahn WC, Rowitch DH, Kenney AM . (2005). The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell 9: 327–338.

    CAS  PubMed  Google Scholar 

  • Slack A, Chen Z, Tonelli R, Pule M, Hunt L, Pession A et al. (2005a). The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc Natl Acad Sci USA 102: 731–736.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slack A, Lozano G, Shohet JM . (2005b). MDM2 as MYCN transcriptional target: implications for neuroblastoma pathogenesis. Cancer Lett 228: 21–27.

    CAS  PubMed  Google Scholar 

  • Smith-Sørensen B, Hijmans EM, Beijersbergen RL, Bernards R . (1996). Functional analysis of Burkitt's lymphoma mutant c-Myc proteins. J Biol Chem 271: 5513–5518.

    PubMed  Google Scholar 

  • Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H et al. (2001). Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3: 392–399.

    CAS  PubMed  Google Scholar 

  • Stupack DG, Teitz T, Potter MD, Mikolon D, Houghton PJ, Kidd VJ et al. (2006). Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439: 95–99.

    CAS  PubMed  Google Scholar 

  • Tang XX, Zhao H, Kung B, Kim DY, Hicks SL, Cohn SL et al. (2006). The MYCN enigma: significance of MYCN expression in neuroblastoma. Cancer Res 66: 2826–2833.

    CAS  PubMed  Google Scholar 

  • Thiele CJ, Reynolds CP, Israel MA . (1985). Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 313: 404–406.

    CAS  PubMed  Google Scholar 

  • Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y et al. (2009). An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284: 8023–8032.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thut CJ, Goodrich JA, Tjian R . (1997). Repression of p53-mediated transcription by MDM2: a dual mechanism. Genes Dev 11: 1974–1986.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trochet D, O'Brien LM, Gozal D, Trang H, Nordenskjöld A, Laudier B et al. (2005). PHOX2B genotype allows for prediction of tumor risk in congenital central hypoventilation syndrome. Am J Hum Genet 76: 421–426.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tweddle DA, Malcolm AJ, Bown N, Pearson AD, Lunec J . (2001). Evidence for the development of p53 mutations after cytotoxic therapy in a neuroblastoma cell line. Cancer Res 61: 8–13.

    CAS  PubMed  Google Scholar 

  • Ushmorov A, Hogarty MD, Liu X, Knauss H, Debatin KM, Beltinger C . (2008). N-myc augments death and attenuates protective effects of Bcl-2 in trophically stressed neuroblastoma cells. Oncogene 27: 3424–3434.

    CAS  PubMed  Google Scholar 

  • Valsesia-Wittmann S, Magdeleine M, Dupasquier S, Garin E, Jallas A-C, Combaret V et al. (2004). Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell 6: 625–630.

    CAS  PubMed  Google Scholar 

  • Van Maerken T, Ferdinande L, Taildeman J, Lambertz I, Yigit N, Vercruysse L et al. (2009a). Antitumor activity of the selective MDM2 antagonist Nutlin-3 against chemoresistant neuroblastoma with wild-type p53. J Natl Cancer Inst 101: 1562–1574.

    CAS  PubMed  Google Scholar 

  • Van Maerken T, Vandesompele J, Rihani A, De Paepe A, Speleman F . (2009b). Escape from p53-mediated tumor surveillance in neuroblastoma: switching off the p14(ARF)-MDM2-p53 axis. Cell Death Differ 16: 1563–1572.

    CAS  PubMed  Google Scholar 

  • Vermeulen J, De Preter K, Naranjo A, Vercruysse L, Van Roy N, Hellemans J et al. (2009). Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. Lancet Oncol 10: 663–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vervoorts J, Lüscher-Firzlaff JM, Rottmann S, Lilischkis R, Walsemann G, Dohmann K et al. (2003). Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep 4: 484–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogan K, Bernstein M, Leclerc JM, Brisson L, Brossard J, Brodeur GM et al. (1993). Absence of p53 gene mutations in primary neuroblastomas. Cancer Res 53: 5269–5273.

    CAS  PubMed  Google Scholar 

  • Wagner LM, Danks MK . (2009). New therapeutic targets for the treatment of high-risk neuroblastoma. J Cell Biochem 107: 46–57.

    CAS  PubMed  Google Scholar 

  • Walkley CR, Fero ML, Chien W-M, Purton LE, McArthur GA . (2005). Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 7: 172–178.

    CAS  PubMed  Google Scholar 

  • Wang W, Kim S-H, El-Deiry WS . (2006). Small-molecule modulators of p53 family signaling and antitumor effects in p53-deficient human colon tumor xenografts. Proc Natl Acad Sci USA 103: 11003–11008.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D . (1999). Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1: 20–26.

    CAS  PubMed  Google Scholar 

  • Weiss WA, Godfrey T, Francisco C, Bishop JM . (2000). Genome-wide screen for allelic imbalance in a mouse model for neuroblastoma. Cancer Res 60: 2483–2487.

    CAS  PubMed  Google Scholar 

  • Welcker M, Orian A, Jin J, Grim JE, Grim JA, Harper JW et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101: 9085–9090.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westermann F, Muth D, Benner A, Bauer T, Henrich K, Oberthuer A et al (2008). Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol 9: R150.

    PubMed  PubMed Central  Google Scholar 

  • Whitehead KA, Langer R, Anderson DG . (2009). Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8: 129–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witt O, Deubzer HE, Lodrini M, Milde T, Oehme I . (2009). Targeting histone deacetylases in neuroblastoma. Curr Pharm Des 15: 436–447.

    CAS  PubMed  Google Scholar 

  • Xu XL, Fang Y, Lee TC, Forrest D, Gregory-Evans C, Almeida D et al (2009). Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell 137: 1018–1031.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue C, Haber M, Flemming C, Marshall GM, Lock RB, MacKenzie KL et al (2007). p53 determines multidrug sensitivity of childhood neuroblastoma. Cancer Res 67: 10351–10360.

    CAS  PubMed  Google Scholar 

  • Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23: 2116–2125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G et al (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6: 308–318.

    CAS  PubMed  Google Scholar 

  • Yin X, Giap C, Lazo JS, Prochownik EV . (2003). Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 22: 6151–6159.

    CAS  PubMed  Google Scholar 

  • Yu K, Toral-Barza L, Shi C, Zhang W-G, Lucas J, Shor B et al (2009). Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 69: 6232–6240.

    CAS  PubMed  Google Scholar 

  • Zask A, Verheijen J, Curran K, Kaplan J, Richard D, Nowak P et al (2009). ATP-competitive inhibitors of the mammalian target of rapamycin: design and synthesis of highly potent and selective pyrazolopyrimidines. J Med Chem 52: 5013–5016.

    CAS  PubMed  Google Scholar 

  • Zeller KI, Zhao X, Lee CWH, Chiu KP, Yao F, Yustein JT et al (2006). Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 103: 17834–17839.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zervos AS, Gyuris J, Brent R . (1993). Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72: 223–232.

    CAS  PubMed  Google Scholar 

  • Zimmerman KA, Yancopoulos GD, Collum RG, Smith RK, Kohl NE, Denis KA et al (1986). Differential expression of myc family genes during murine development. Nature 319: 780–783.

    CAS  PubMed  Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ et al (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12: 2424–2433.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Chris Hackett and Theo Nicolaides for critical review. We acknowledge support from NIH grants CA133091, NS055750, CA102321, CA097257, CA128583; Burroughs Wellcome Fund, American Brain Tumor Association, The Brain Tumor Society, Accelerate Brain Cancer Cure; Alex's Lemonade Stand, Children's National Brain Tumor, Wallace H. Coulter, Katie Dougherty, Pediatric Brain Tumor, Samuel G Waxman and V Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W C Gustafson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafson, W., Weiss, W. Myc proteins as therapeutic targets. Oncogene 29, 1249–1259 (2010). https://doi.org/10.1038/onc.2009.512

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.512

Keywords

This article is cited by

Search

Quick links