Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53–MDM2 signaling pathway

Abstract

APE1/Ref-1 is an essential DNA repair/gene regulatory protein in mammals of which intracellular level significantly affects cellular sensitivity to genotoxicants. The apurinic/apyrimidinic endonuclease 1 (APE1) functions are altered by phosphorylation and acetylation. We here report that APE1 is also modified by ubiquitination. APE1 ubiquitination occurred specifically at Lys residues near the N-terminus, and was markedly enhanced by mouse double minute 2 (MDM2), the major intracellular p53 inhibitor. Moreover, DNA-damaging reagents and nutlin-3, an inhibitor of MDM2–p53 interaction, increased APE1 ubiquitination in the presence of p53. Downmodulation of MDM2 increased APE1 level, suggesting that MDM2-mediated ubiquitination can be a signal for APE1 degradation. In addition, unlike the wild-type APE1, ubiquitin–APE1 fusion proteins were predominantly present in the cytoplasm. Therefore, monoubiquitination not only is a prerequisite for degradation, but may also alter the APE1 activities in cells. These results reveal a novel regulation of APE1 through ubiquitination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AP:

apurinic/apyrimidinic

APE1:

AP endonuclease 1

BER:

base excision repair

MDM2:

mouse double minute 2

His-ubi:

× 6 histidine-tagged ubiquitin

H2O2:

hydrogen peroxide

ROS:

reactive oxygen species

wt:

wild type

XPC:

xeroderma pigmentosum complementation group C

XRCC1:

X-ray cross complementing group 1

References

  • Asou H, Tashiro S, Hamamoto K, Otsuji A, Kita K, Kamada N . (1991). Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation. Blood 77: 2031–2036.

    CAS  Google Scholar 

  • Badciong JC, Haas AL . (2002). MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination. J Biol Chem 277: 49668–49675.

    Article  CAS  Google Scholar 

  • Balusu R, Jaiswal AS, Armas ML, Kundu CN, Bloom LB, Narayan S . (2007). Structure/function analysis of the interaction of adenomatous polyposis coli with DNA polymerase beta and its implications for base excision repair. Biochemistry 46: 13961–13974.

    Article  CAS  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760.

    Article  CAS  Google Scholar 

  • Bartel B, Wunning I, Varshavsky A . (1990). The recognition component of the N-end rule pathway. EMBO J 9: 3179–3189.

    Article  CAS  Google Scholar 

  • Bhakat KK, Izumi T, Yang SH, Hazra TK, Mitra S . (2003). Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene. EMBO J 22: 6299–6309.

    Article  CAS  Google Scholar 

  • Brooks CL, Gu W . (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell 21: 307–315.

    Article  CAS  Google Scholar 

  • Cummins JM, Rago C, Kohli M, Kinzler KW, Lengauer C, Vogelstein B . (2004). Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428: 1 p following 486.

    Article  Google Scholar 

  • Desai SD, Haas AL, Wood LM, Tsai YC, Pestka S, Rubin EH et al. (2006). Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res 66: 921–928.

    Article  CAS  Google Scholar 

  • Di Maso V, Avellini C, Croce LS, Rosso N, Quadrifoglio F, Cesaratto L et al. (2007). Subcellular localization of APE1/Ref-1 in human hepatocellular carcinoma: possible prognostic significance. Mol Med 13: 89–96.

    Article  CAS  Google Scholar 

  • Fan Z, Beresford PJ, Zhang D, Xu Z, Novina CD, Yoshida A et al. (2003). Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat Immunol 4: 145–153.

    Article  CAS  Google Scholar 

  • Fantini D, Vascotto C, Deganuto M, Bivi N, Gustincich S, Marcon G et al. (2008). APE1/Ref-1 regulates PTEN expression mediated by Egr-1. Free Radic Res 42: 20–29.

    Article  CAS  Google Scholar 

  • Fishel ML, Kelley MR . (2007). The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Aspects Med 28: 375–395.

    Article  CAS  Google Scholar 

  • Fritz G, Kaina B . (1999). Phosphorylation of the DNA repair protein APE/REF-1 by CKII affects redox regulation of AP-1. Oncogene 18: 1033–1040.

    Article  CAS  Google Scholar 

  • Fuchs S, Philippe J, Corvol P, Pinet F . (2003). Implication of Ref-1 in the repression of renin gene transcription by intracellular calcium. J Hypertens 21: 327–335.

    Article  CAS  Google Scholar 

  • Fung H, Demple B . (2005). A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol Cell 17: 463–470.

    Article  CAS  Google Scholar 

  • Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H et al. (2003). Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300: 342–344.

    Article  CAS  Google Scholar 

  • Guillet M, Boiteux S . (2002). Endogenous DNA abasic sites cause cell death in the absence of Apn1, Apn2 and Rad1/Rad10 in Saccharomyces cerevisiae. EMBO J 21: 2833–2841.

    Article  CAS  Google Scholar 

  • Honda R, Tanaka H, Yasuda H . (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420: 25–27.

    Article  CAS  Google Scholar 

  • Ischenko AA, Saparbaev MK . (2002). Alternative nucleotide incision repair pathway for oxidative DNA damage. Nature 415: 183–187.

    Article  Google Scholar 

  • Iwakuma T, Lozano G . (2003). MDM2, an introduction. Mol Cancer Res 1: 993–1000.

    CAS  Google Scholar 

  • Izumi T, Brown DB, Naidu CV, Bhakat KK, Macinnes MA, Saito H et al. (2005). Two essential but distinct functions of the mammalian abasic endonuclease. Proc Natl Acad Sci USA 102: 5739–5743.

    Article  CAS  Google Scholar 

  • Izumi T, Henner WD, Mitra S . (1996). Negative regulation of the major human AP-endonuclease, a multifunctional protein. Biochemistry 35: 14679–14683.

    Article  CAS  Google Scholar 

  • Izumi T, Wiederhold LR, Roy G, Roy R, Jaiswal A, Bhakat KK et al. (2003). Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage. Toxicology 193: 43–65.

    Article  CAS  Google Scholar 

  • Jackson EB, Theriot CA, Chattopadhyay R, Mitra S, Izumi T . (2005). Analysis of nuclear transport signals in the human apurinic/apyrimidinic endonuclease (APE1/Ref1). Nucleic Acids Res 33: 3303–3312.

    Article  CAS  Google Scholar 

  • Jaiswal AS, Narayan S . (2008). A novel function of adenomatous polyposis coli (APC) in regulating DNA repair. Cancer Lett 271: 272–280.

    Article  CAS  Google Scholar 

  • Kakolyris S, Kaklamanis L, Engels K, Turley H, Hickson ID, Gatter KC et al. (1997). Human apurinic endonuclease 1 expression in a colorectal adenoma-carcinoma sequence. Cancer Res 57: 1794–1797.

    CAS  PubMed  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M . (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22: 159–180.

    Article  CAS  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Kakolyris S, Sivridis E, Georgoulias V, Funtzilas G et al. (2001). Nuclear expression of human apurinic/apyrimidinic endonuclease (HAP1/Ref-1) in head-and-neck cancer is associated with resistance to chemoradiotherapy and poor outcome. Int J Radiat Oncol Biol Phys 50: 27–36.

    Article  CAS  Google Scholar 

  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W . (2003). Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302: 1972–1975.

    Article  CAS  Google Scholar 

  • Ludwig DL, MacInnes MA, Takiguchi Y, Purtymun PE, Henrie M, Flannery M et al. (1998). A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity. Mutat Res 409: 17–29.

    Article  CAS  Google Scholar 

  • Marchenko ND, Wolff S, Erster S, Becker K, Moll UM . (2007). Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26: 923–934.

    Article  CAS  Google Scholar 

  • McHaffie GS, Ralston SH . (1995). Origin of a negative calcium response element in an ALU-repeat: implications for regulation of gene expression by extracellular calcium. Bone 17: 11–14.

    Article  CAS  Google Scholar 

  • Meira LB, Cheo DL, Hammer RE, Burns DK, Reis A, Friedberg EC . (1997). Genetic interaction between HAP1/REF-1 and p53. Nat Genet 17: 145.

    Article  CAS  Google Scholar 

  • Meira LB, Devaraj S, Kisby GE, Burns DK, Daniel RL, Hammer RE et al. (2001). Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress. Cancer Res 61: 5552–5557.

    CAS  PubMed  Google Scholar 

  • Minsky N, Oren M . (2004). The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol Cell 16: 631–639.

    Article  CAS  Google Scholar 

  • Okazaki T, Chung U, Nishishita T, Ebisu S, Usuda S, Mishiro S et al. (1994). A redox factor protein, ref1, is involved in negative gene regulation by extracellular calcium. J Biol Chem 269: 27855–27862.

    CAS  PubMed  Google Scholar 

  • Ono Y, Furuta T, Ohmoto T, Akiyama K, Seki S . (1994). Stable expression in rat glioma cells of sense and antisense nucleic acids to a human multifunctional DNA repair enzyme, APEX nuclease. Mutat Res 315: 55–63.

    Article  CAS  Google Scholar 

  • Robertson KA, Hill DP, Xu Y, Liu L, Van Epps S, Hockenbery DM et al. (1997). Down-regulation of apurinic/apyrimidinic endonuclease expression is associated with the induction of apoptosis in differentiating myeloid leukemia cells. Cell Growth Differ 8: 443–449.

    CAS  PubMed  Google Scholar 

  • Saporito SM, Gedenk M, Cunningham RP . (1989). Role of exonuclease III and endonuclease IV in repair of pyrimidine dimers initiated by bacteriophage T4 pyrimidine dimer-DNA glycosylase. J Bacteriol 171: 2542–2546.

    Article  CAS  Google Scholar 

  • Saville MK, Sparks A, Xirodimas DP, Wardrop J, Stevenson LF, Bourdon JC et al. (2004). Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 279: 42169–42181.

    Article  CAS  Google Scholar 

  • Shmueli A, Oren M . (2004). Regulation of p53 by Mdm2: fate is in the numbers. Mol Cell 13: 4–5.

    Article  CAS  Google Scholar 

  • Takao M, Aburatani H, Kobayashi K, Yasui A . (1998). Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Res 26: 2917–2922.

    Article  CAS  Google Scholar 

  • Tell G, Damante G, Caldwell D, Kelley MR . (2005). The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal 7: 367–384.

    Article  CAS  Google Scholar 

  • Tell G, Quadrifoglio F, Tiribelli C, Kelley MR . (2008). The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal 11: 601–620.

    Article  Google Scholar 

  • Uldrijan S, Pannekoek WJ, Vousden KH . (2007). An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. EMBO J 26: 102–112.

    Article  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  Google Scholar 

  • Vidal AE, Boiteux S, Hickson ID, Radicella JP . (2001). XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein–protein interactions. EMBO J 20: 6530–6539.

    Article  CAS  Google Scholar 

  • Vousden KH, Lane DP . (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8: 275–283.

    Article  CAS  Google Scholar 

  • Walker LJ, Craig RB, Harris AL, Hickson ID . (1994). A role for the human DNA repair enzyme HAP1 in cellular protection against DNA damaging agents and hypoxic stress. Nucleic Acids Res 22: 4884–4889.

    Article  CAS  Google Scholar 

  • Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T . (1996). The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc Natl Acad Sci USA 93: 8919–8923.

    Article  CAS  Google Scholar 

  • Yacoub A, Kelley MR, Deutsch WA . (1997). The DNA repair activity of human redox/repair protein APE/Ref-1 is inactivated by phosphorylation. Cancer Res 57: 5457–5459.

    CAS  PubMed  Google Scholar 

  • Yang HY, Wen YY, Chen CH, Lozano G, Lee MH . (2003). 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol Cell Biol 23: 7096–7107.

    Article  CAS  Google Scholar 

  • Yang HY, Wen YY, Lin YI, Pham L, Su CH, Yang H et al. (2007). Roles for negative cell regulator 14-3-3sigma in control of MDM2 activities. Oncogene 26: 7355–7362.

    Article  CAS  Google Scholar 

  • Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS . (2002). Effect of p53 status on tumor response to antiangiogenic therapy. Science 295: 1526–1528.

    Article  CAS  Google Scholar 

  • Zhao J, Gao F, Zhang Y, Wei K, Liu Y, Deng X . (2008). Bcl2 inhibits abasic site repair by down-regulating APE1 endonuclease activity. J Biol Chem 283: 9925–9932.

    Article  CAS  Google Scholar 

  • Zhou J, Ahn J, Wilson SH, Prives C . (2001). A role for p53 in base excision repair. EMBO J 20: 914–923.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank KA Kerlec, KM Lane, MW Lake, MK Rogoszewicz and C Bulkin for their technical assistance, and Mr Lake for editorial help. We also thank Dr S Desai and Dr A Haas at LSUHSC, New Orleans for their critical discussion and experimental guidance. Dr Davis's excellent editorial help is much appreciated. This research was supported by NCI grant CA98664 (TI) and Louisiana Cancer Research Consortium funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Izumi.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busso, C., Iwakuma, T. & Izumi, T. Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53–MDM2 signaling pathway. Oncogene 28, 1616–1625 (2009). https://doi.org/10.1038/onc.2009.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.5

Keywords

This article is cited by

Search

Quick links