Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

NFAT3 transcription factor inhibits breast cancer cell motility by targeting the Lipocalin 2 gene

Abstract

NFAT1 and NFAT5 act as pro-invasive and pro-migratory transcription factors in breast carcinoma, contributing to the formation of metastases. We report that NFAT3 is specifically expressed in estrogen receptor α positive (ERA+) breast cancer cells. We show that NFAT3 inhibits by itself the invasion capacity of ERA+ breast cancer cells and needs to cooperate with ERA to inhibit their migration. Conversely, NFAT3 downregulation results in actin reorganization associated with increased migration and invasion capabilities. NFAT3 signaling reduces migration through inhibition of Lipocalin 2 (LCN2) gene expression. Collectively, our study unravels an earlier unknown NFAT3/LCN2 axis that critically controls motility in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K et al. (2004). Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22: 2284–2293.

    Article  CAS  PubMed  Google Scholar 

  • Baksh S, Widlund HR, Frazer-Abel AA, Du J, Fosmire S, Fisher DE et al. (2002). NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol Cell 10: 1071–1081.

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A . (2008). Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat 108: 389–397.

    Article  CAS  PubMed  Google Scholar 

  • Benedito AB, Lehtinen M, Massol R, Lopes UG, Kirchhausen T, Rao A et al. (2005). The transcription factor NFAT3 mediates neuronal survival. J Biol Chem 280: 2818–2825.

    Article  CAS  PubMed  Google Scholar 

  • Bertheau P, Turpin E, Rickman DS, Espie M, de Reynies A, Feugeas JP et al. (2007). Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen. PLoS Med 4: e90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G et al. (2006). Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J 25: 3714–3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuvpilo S, Jankevics E, Tyrsin D, Akimzhanov A, Moroz D, Jha MK et al. (2002). Autoregulation of NFATc1/A expression facilitates effector T cells to escape from rapid apoptosis. Immunity 16: 881–895.

    Article  CAS  PubMed  Google Scholar 

  • Devireddy LR, Teodoro JG, Richard FA, Green MR . (2001). Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science 293: 829–834.

    Article  CAS  PubMed  Google Scholar 

  • Dutertre M, Smith CL . (2003). Ligand-independent interactions of p160/Steroid Receptor Coactivators And CREB-binding protein (CBP) w. Mol Endocrinol 17: 1296–1314.

    Article  CAS  PubMed  Google Scholar 

  • Ellison G, Klinowska T, Westwood RF, Docter E, French T, Fox JC . (2002). Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol 55: 294–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flower DR . (1996). The lipocalin protein family: structure and function. Biochem J 318 (Part 1): 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler AM, Solodin N, Preisler-Mashek MT, Zhang P, Lee AV, Alarid ET . (2004). Increases in estrogen receptor-\{alpha\} concentrati. FASEB J 18: 81–93.

    Article  CAS  PubMed  Google Scholar 

  • Friedl A, Stoesz SP, Buckley P, Gould MN . (1999). Neutrophil gelatinase-associated lipocalin in normal and neoplastic human tissues cell type-specific pattern of expression. Histochem J 31: 433–441.

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Wolf K . (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3: 362–374.

    Article  CAS  PubMed  Google Scholar 

  • Furutani M, Arii S, Mizumoto M, Kato M, Imamura M . (1998). Identification of a neutrophil gelatinase-associated lipocalin mRNA in human pancreatic cancers using a modified signal sequence trap method. Cancer Lett 122: 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A et al. (2001). Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61: 5979–5984.

    CAS  PubMed  Google Scholar 

  • Gwira JA, Wei F, Ishibe S, Ueland JM, Barasch J, Cantley LG . (2005). Expression of neutrophil gelatinase-associated lipocalin regulates epithelial morphogenesis in vitro. J Biol Chem 280: 7875–7882.

    Article  CAS  PubMed  Google Scholar 

  • Hill-Eubanks DC, Gomez MF, Stevenson AS, Nelson MT . (2003). NFAT regulation in smooth muscle. Trends Cardiovasc Med 13: 56–62.

    Article  CAS  PubMed  Google Scholar 

  • Ho IC, Kim JH, Rooney JW, Spiegelman BM, Glimcher LH . (1998). A potential role for the nuclear factor of activated T cells family of transcriptional regulatory proteins in adipogenesis. Proc Natl Acad Sci USA 95: 15537–15541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzmann K, Kohlhammer H, Schwaenen C, Wessendorf S, Kestler HA, Schwoerer A et al. (2004). Genomic DNA-chip hybridization reveals a higher incidence of genomic amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes. Cancer Res 64: 4428–4433.

    Article  CAS  PubMed  Google Scholar 

  • Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N et al. (2005). Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol 171: 1023–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauliac S, Lopez-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A . (2002). The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol 4: 540–544.

    Article  CAS  PubMed  Google Scholar 

  • Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB . (2001). Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene 20: 4209–4218.

    Article  CAS  PubMed  Google Scholar 

  • Leng X, Ding T, Lin H, Wang Y, Hu L, Hu J et al. (2009). Inhibition of lipocalin 2 impairs breast tumorigenesis and metastasis. Cancer Res 69: 8579–8584.

    Article  CAS  PubMed  Google Scholar 

  • Leng X, Lin H, Ding T, Wang Y, Wu Y, Klumpp S et al. (2008). Lipocalin 2 is required for BCR-ABL-induced tumorigenesis. Oncogene 27: 6110–6119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CI, Malone KE, Weiss NS, Daling JR . (2001). Tamoxifen therapy for primary breast cancer and risk of contralateral breast cancer. J Natl Cancer Inst 93: 1008–1013.

    Article  CAS  PubMed  Google Scholar 

  • Lim R, Ahmed N, Borregaard N, Riley C, Wafai R, Thompson EW et al. (2007). Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition. Int J Cancer 120: 2426–2434.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rodriguez C, Aramburu J, Rakeman AS, Rao A . (1999). NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proc Natl Acad Sci USA 96: 7214–7219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancini M, Toker A . (2009). NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer 9: 810–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J et al. (1998). A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93: 215–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neal JW, Clipstone NA . (2003). A constitutively active NFATc1 mutant induces a transformed phenotype in 3T3-L1 fibroblasts. J Biol Chem 278: 17246–17254.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen BS, Borregaard N, Bundgaard JR, Timshel S, Sehested M, Kjeldsen L . (1996). Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut 38: 414–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platet N, Cunat S, Chalbos D, Rochefort H, Garcia M . (2000). Unliganded and liganded estrogen receptors protect against cancer invasion via different mechanisms. Mol Endocrinol 14: 999–1009.

    Article  CAS  PubMed  Google Scholar 

  • Playford RJ, Belo A, Poulsom R, Fitzgerald AJ, Harris K, Pawluczyk I et al. (2006). Effects of mouse and human lipocalin homologues 24p3/lcn2 and neutrophil gelatinase-associated lipocalin on gastrointestinal mucosal integrity and repair. Gastroenterology 131: 809–817.

    Article  CAS  PubMed  Google Scholar 

  • Price JE, Polyzos A, Zhang RD, Daniels LM . (1990). Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 50: 717–721.

    CAS  PubMed  Google Scholar 

  • Provatopoulou X, Gounaris A, Kalogera E, Zagouri F, Flessas I, Goussetis E et al. (2009). Circulating levels of matrix metalloproteinase-9 (MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and their compex MMP-9/NGAL in breast cancer disease. BMC Cancer 9: 390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin X, Wang XH, Yang ZH, Ding LH, Xu XJ, Cheng L et al. (2008). Repression of NFAT3 transcriptional activity by estrogen receptors. Cell Mol Life Sci 65: 2752–2762.

    Article  CAS  PubMed  Google Scholar 

  • Ranger AM, Gerstenfeld LC, Wang J, Kon T, Bae H, Gravallese EM et al. (2000). The nuclear factor of activated T cells (NFAT) transcription factor NFATp (NFATc2) is a repressor of chondrogenesis. J Exp Med 191: 9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR . (1988). Identification of a putative regulator of early T cell activation genes. Science 241: 202–205.

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Gu Y, Yang J, Xu L, Mi W, Yu W . (2008). Lipocalin 2 promotes lung metastasis of murine breast cancer cells. J Exp Clin Cancer Res 27: 83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoesz SP, Friedl A, Haag JD, Lindstrom MJ, Clark GM, Gould MN . (1998). Heterogeneous expression of the lipocalin NGAL in primary breast cancers. Int J Cancer 79: 565–572.

    Article  CAS  PubMed  Google Scholar 

  • Thompson EW, Reich R, Shima TB, Albini A, Graf J, Martin GR et al. (1988). Differential regulation of growth and invasiveness of MCF-7 breast cancer cells by antiestrogens. Cancer Res 48: 6764–6768.

    CAS  PubMed  Google Scholar 

  • Xanthoudakis S, Viola JP, Shaw KT, Luo C, Wallace JD, Bozza PT et al. (1996). An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272: 892–895.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL et al. (2009). Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci USA 106: 3913–3918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xie X, Zhu X, Zhu J, Hao C, Lu Q et al. (2005). Stimulatory cross-talk between NFAT3 and estrogen receptor in breast cancer cells. J Biol Chem 280: 43188–43197.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wu Y, Zhang Y, LeRoith D, Bernlohr DA, Chen X . (2008). The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol Endocrinol 22: 1416–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong L, Peng X, Hidalgo GE, Doherty DE, Stromberg AJ, Hirschowitz EA . (2004). Identification of circulating antibodies to tumor-associated proteins for combined use as markers of non-small cell lung cancer. Proteomics 4: 1216–1225.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H de Thé, D Auboeuf and members of their laboratories for insightful discussions. We thank E Turpin, P Bertheau for providing their microarray data. We thank J L Poyet for providing the T7-pcDNA3 vector and G lazennec for the ERα expression vector. We thank T Hoey for providing the human NFAT3 expression vector. We thank J-C Gluckman for reading the paper. We thank N Setterblad at the Service Commun d’Imagerie Cellulaire et Moléculaire of the Institut Universitaire d’Hématologie IFR105 for confocal microscopy. The Service Commun d’Imagerie Cellulaire et Moléculaire is supported by grants from the Conseil Régional d’Ile-de-France and the Ministère de la Recherche. M Fougère was supported by a doctoral grant from INSERM Région Ile-de-France and an ARC fellowship. B Gaudineau was supported by a grant from the Cancéropole Ile-de-France and J Barbier by a grant from the Research Ministry. This work was supported by the INSERM AVENIR Program and grants from Ligue Nationale contre le Cancer, the Comité de Paris of Ligue Nationale contre le Cancer, ARC, and the Comité Tumeurs de la Fondation de France and the Cancéropole Ile-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Jauliac.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fougère, M., Gaudineau, B., Barbier, J. et al. NFAT3 transcription factor inhibits breast cancer cell motility by targeting the Lipocalin 2 gene. Oncogene 29, 2292–2301 (2010). https://doi.org/10.1038/onc.2009.499

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.499

Keywords

This article is cited by

Search

Quick links