Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ARF-induced downregulation of Mip130/LIN-9 protein levels mediates a positive feedback that leads to increased expression of p16Ink4a and p19Arf

Abstract

The ARF-MDM2-p53 pathway constitutes one of the most important mechanisms of surveillance against oncogenic transformation, and its inactivation occurs in a large proportion of cancers. Here, we show that ARF regulates Mip130/LIN-9 by inducing its translocation to the nucleolus and decreasing the expression of the Mip130/LIN-9 protein through a post-transcriptional mechanism. The knockdown of Mip130/LIN-9 in p53−/− and Arf−/− mouse embryonic fibroblasts (MEFs) mimics some effects of ARF, such as the downregulation of B-Myb, impaired induction of G2/M genes, and a decrease in cell proliferation. Importantly, although the knockdown of Mip130/LIN-9 reduced the proliferation of p53 or Arf-null MEFs, only p53−/− MEFs showed a senescence-like state and an increase in the expression of Arf and p16. Interestingly, the increase in p16 and ARF is indirect because the Mip130/LIN-9 knockdown decreased the transcription of negative regulators of the Ink4a/Arf locus, such as BUBR1 and CDC6. Chromatin immunoprecipitation assays also reveal that Mip130/LIN-9 occupies the promoters of the BubR1 and cdc6 genes, suggesting that Mip130/LIN-9 is necessary for the expression of these genes. Altogether, these results indicate that there is a feedback mechanism between ARF and Mip130/LIN-9 in which either the increase of ARF or the decrease in Mip130/LIN-9 causes a further increase in the expression of Arf and p16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

MEFs:

mouse embryonic fibroblasts

CDK:

cyclin-dependent kinase

Mip:

Myb-interacting protein

WT:

wild type

GFP:

green fluorescence protein

References

  • Baker DJ, Jeganathan KB, Malureanu L, Perez-Terzic C, Terzic A, van Deursen JM . (2006). Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. J Cell Biol 172: 529–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker DJ, Jin F, van Deursen JM . (2008a). The yin and yang of the Cdkn2a locus in senescence and aging. Cell Cycle 7: 2795–2802.

    Article  CAS  PubMed  Google Scholar 

  • Baker DJ, Perez-Terzic C, Jin F, Pitel K, Niederlander NJ, Jeganathan K et al. (2008b). Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol 10: 825–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beijersbergen RL, Carlee L, Kerkhoven RM, Bernards R . (1995). Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes. Genes Dev 9: 1340–1353.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV . (2006). Cell senescence: hypertrophic arrest beyond the restriction point. J Cell Physiol 209: 592–597.

    Article  CAS  PubMed  Google Scholar 

  • Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C et al. (2007). The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21: 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisi J, d'Adda di Fagagna F . (2007). Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8: 729–740.

    Article  CAS  PubMed  Google Scholar 

  • Carnero A, Hudson JD, Price CM, Beach DH . (2000). p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2: 148–155.

    Article  CAS  PubMed  Google Scholar 

  • Cobrinik D . (2005). Pocket proteins and cell cycle control. Oncogene 24: 2796–2809.

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Blasco MA, Serrano M . (2007). Cellular senescence in cancer and aging. Cell 130: 223–233.

    Article  CAS  PubMed  Google Scholar 

  • Dannenberg J-H, van Rossum A, Schuijff L, te Riele H . (2000). Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev 14: 3051–3064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta A, Sen J, Hagen J, Korgaonkar CK, Caffrey M, Quelle DE et al. (2005). ARF directly binds DP1: interaction with DP1 coincides with the G1 arrest function of ARF. Mol Cell Biol 25: 8024–8036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimri GP . (2005). What has senescence got to do with cancer? Cancer Cell 7: 505–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du W, Pogoriler J . (2006). Retinoblastoma family genes. Oncogene 25: 5190–5200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eymin B, Leduc C, Coll JL, Brambilla E, Gazzeri S . (2003). p14ARF induces G2 arrest and apoptosis independently of p53 leading to regression of tumours established in nude mice. Oncogene 22: 1822–1835.

    Article  CAS  PubMed  Google Scholar 

  • Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, Hannon GJ et al. (2002). Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 22: 3497–3508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frolov MV, Dyson NJ . (2004). Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J Cell Sci 117: 2173–2181.

    Article  CAS  PubMed  Google Scholar 

  • Gazzeri S, Della Valle V, Chaussade L, Brambilla C, Larsen CJ, Brambilla E . (1998). The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res 58: 3926–3931.

    CAS  PubMed  Google Scholar 

  • Gil J, Bernard D, Martinez D, Beach D . (2004). Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol 6: 67–72.

    Article  CAS  PubMed  Google Scholar 

  • Gil J, Peters G . (2006). Regulation of the INK4b–ARF–INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7: 667–677.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez S, Klatt P, Delgado S, Conde E, Lopez-Rios F, Sanchez-Cespedes M et al. (2006). Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature 440: 702–706.

    Article  CAS  PubMed  Google Scholar 

  • Hansen K, Farkas T, Lukas J, Holm K, Ronnstrand L, Bartek J . (2001). Phosphorylation-dependent and -independent functions of p130 cooperate to evoke a sustained G1 block. EMBO J 20: 422–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartman TK, Wengenack TM, Poduslo JF, van Deursen JM . (2007). Mutant mice with small amounts of BubR1 display accelerated age-related gliosis. Neurobiol Aging 28: 921–927.

    Article  CAS  PubMed  Google Scholar 

  • Hemmati PG, Normand G, Verdoodt B, von Haefen C, Hasenjager A, Guner D et al. (2005). Loss of p21 disrupts p14 ARF-induced G1 cell cycle arrest but augments p14 ARF-induced apoptosis in human carcinoma cells. Oncogene 24: 4114–4128.

    Article  CAS  PubMed  Google Scholar 

  • Isono K, Fujimura Y, Shinga J, Yamaki M, O-Wang J, Takihara Y et al. (2005). Mammalian polyhomeotic homologues Phc2 and Phc1 act in synergy to mediate polycomb repression of Hox genes. Mol Cell Biol 25: 6694–6706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . (1999a). The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397: 164–168.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M . (1999b). Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13: 2678–2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly-Spratt KS, Gurley KE, Yasui Y, Kemp CJ . (2004). p19Arf suppresses growth, progression, and metastasis of Hras-driven carcinomas through p53-dependent and -independent pathways. PLoS Biol 2: E242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leng X, Noble M, Adams PD, Qin J, Harper JW . (2002). Reversal of growth suppression by p107 via direct phosphorylation by cyclin D1/cyclin-dependent kinase 4. Mol Cell Biol 22: 2242–2254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindeman GJ, Gaubatz S, Livingston DM, Ginsberg D . (1997). The subcellular localization of E2F-4 is cell-cycle dependent. Proc Natl Acad Sci USA 94: 5095–5100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litovchick L, Sadasivam S, Florens L, Zhu X, Swanson SK, Velmurugan S et al. (2007). Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol Cell 26: 539–551.

    Article  CAS  PubMed  Google Scholar 

  • Modestou M, Puig-Antich V, Korgaonkar C, Eapen A, Quelle DE . (2001). The alternative reading frame tumor suppressor inhibits growth through p21-dependent and p21-independent pathways. Cancer Res 61: 3145–3150.

    CAS  PubMed  Google Scholar 

  • Muller H, Moroni MC, Vigo E, Petersen BO, Bartek J, Helin K . (1997). Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol Cell Biol 17: 5508–5520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normand G, Hemmati PG, Verdoodt B, von Haefen C, Wendt J, Guner D et al. (2005). p14ARF induces G2 cell cycle arrest in p53- and p21-deficient cells by down-regulating p34cdc2 kinase activity. J Biol Chem 280: 7118–7130.

    Article  CAS  PubMed  Google Scholar 

  • Osterloh L, von Eyss B, Schmit F, Rein L, Hubner D, Samans B et al. (2007). The human synMuv-like protein LIN-9 is required for transcription of G2/M genes and for entry into mitosis. EMBO J 26: 144–157.

    Article  CAS  PubMed  Google Scholar 

  • Pear WS, Nolan GP, Scott ML, Baltimore D . (1993). Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 90: 8392–8396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilkinton M, Sandoval R, Colamonici OR . (2007a). Mammalian Mip/LIN-9 interacts with either the p107, p130/E2F4 repressor complex or B-Myb in a cell cycle-phase-dependent context distinct from the Drosophila dREAM complex. Oncogene 26: 7535–7546.

    Article  CAS  PubMed  Google Scholar 

  • Pilkinton M, Sandoval R, Song J, Ness SA, Colamonici OR . (2007b). Mip/LIN-9 regulates the expression of B-Myb and the induction of cyclin A, cyclin B, and CDK1. J Biol Chem 282: 168–175.

    Article  CAS  PubMed  Google Scholar 

  • Quelle DE, Zindy F, Ashmun RA, Sherr CJ . (1995). Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993–1000.

    Article  CAS  PubMed  Google Scholar 

  • Saadatmandi N, Tyler T, Huang Y, Haghighi A, Frost G, Borgstrom P et al. (2002). Growth suppression by a p14(ARF) exon 1beta adenovirus in human tumor cell lines of varying p53 and Rb status. Cancer Gene Ther 9: 830–839.

    Article  CAS  PubMed  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B et al. (2000). Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14: 3037–3050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandoval R, Pilkinton M, Colamonici OR . (2009). Deletion of the p107/p130-binding domain of Mip130/LIN-9 bypasses the requirement for CDK4 activity for the dissociation of Mip130/LIN-9 from p107/p130-E2F4 complex. Exp Cell Res 315: 2914–2920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandoval R, Xue J, Tian X, Barrett K, Pilkinton M, Baida G et al. (2006). A mutant allele of BARA/LIN-9 rescues the cdk4−/− phenotype by releasing the repression on E2F-regulated genes. Exp Cell Res 312: 2465–2475.

    Article  CAS  PubMed  Google Scholar 

  • Schmit F, Korenjak M, Mannefeld M, Schmitt K, Franke C, von Eyss B et al. (2007). LINC, a human complex that is related to pRB-containing complexes in invertebrates regulates the expression of G2/M genes. Cell Cycle 6: 1903–1913.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M . (2000). The INK4a/ARF locus in murine tumorigenesis. Carcinogenesis 21: 865–869.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE . (2004). Ink4a/Arf links senescence and aging. Exp Gerontol 39: 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA . (2004). Telomeres, stem cells, senescence, and cancer. J Clin Invest 113: 160–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ . (2000). The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60: 3689–3695.

    CAS  PubMed  Google Scholar 

  • Sherr CJ . (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6: 663–673.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, McCormick F . (2002). The RB and p53 pathways in cancer. Cancer Cell 2: 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Weber JD . (2000). The ARF/p53 pathway. Curr Opin Genet Develop 10: 94–99.

    Article  CAS  Google Scholar 

  • Sotillo R, Dubus P, Martin J, de la Cueva E, Ortega S, Malumbres M et al. (2001a). Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. EMBO J 20: 6637–6647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotillo R, Garcia JF, Ortega S, Martin J, Dubus P, Barbacid M et al. (2001b). Invasive melanoma in Cdk4-targeted mice. Proc Natl Acad Sci USA 98: 13312–13317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevaux O, Dyson NJ . (2002). A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 14: 684–691.

    Article  CAS  PubMed  Google Scholar 

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S et al. (1998). The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17: 5001–5014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todaro GJ, Green H . (1963). Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17: 299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verona R, Moberg K, Estes S, Starz M, Vernon JP, Lees JA . (1997). E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol Cell Biol 17: 7268–7282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voncken JW, Roelen BA, Roefs M, de Vries S, Verhoeven E, Marino S et al. (2003). Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc Natl Acad Sci USA 100: 2468–2473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao ZX, Ginsberg D, Ewen M, Livingston DM . (1996). Regulation of the retinoblastoma protein-related protein p107 by G1 cyclin-associated kinases. Proc Natl Acad Sci USA 93: 4633–4637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H . (2007). Molecular signaling and genetic pathways of senescence: its role in tumorigenesis and aging. J Cell Physiol 210: 567–574.

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Giangrande PH, Nevins JR . (2004). E2Fs link the control of G1/S and G2/M transcription. EMBO J 23: 4615–4626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou X, Ray D, Aziyu A, Christov K, Boiko AD, Gudkov AD et al. (2002). Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to Arf/p53-independent senescence. Genes Dev 16: 2923–2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Drs Charles Sherr and Martine Roussel, St Jude Children's Research Hospital, for the Arf and p53 plasmid constructs and Arf−/− and p53−/− MEFs. This work was supported by Public Health Service Grants RO1 GM81562 (ORC) and NCI-KO1 CA127862 (RS) from the National Institutes of Health. JS and MP were supported by NIH Institutional T32 training grants, Ruth L Kirschstein National Research Service Award NOT-OD-06-093 and Training Program in Signal Transduction and Cellular Endocrinology DK07739, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O R Colamonici.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Sandoval, R., Pilkinton, M. et al. ARF-induced downregulation of Mip130/LIN-9 protein levels mediates a positive feedback that leads to increased expression of p16Ink4a and p19Arf. Oncogene 29, 1976–1986 (2010). https://doi.org/10.1038/onc.2009.485

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.485

Keywords

This article is cited by

Search

Quick links