Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel XPF −357A>C polymorphism predicts risk and recurrence of bladder cancer

Abstract

Xeroderma pigmentosum group F (XPF) has an essential role in the nucleotide excision repair pathway that removes a wide variety of DNA lesions. We hypothesized that genetic variants in XPF are associated with bladder cancer risk and recurrence. We selected three tagging single nucleotide polymorphisms (tagSNPs) from the HapMap database for the Chinese and genotyped them in a two-stage case–control study to evaluate the association and further examined the functionality of a novel polymorphism in the promoter. The two-stage analysis found that the rs744154 tagSNP in the XPF intron 1, which was linkage disequilibrium with the –357A>C polymorphism in the promoter region, was associated with a protective effect on bladder cancer risk. Electrophoretic mobility shift assay (EMSA) further revealed that the –357C allele decreased the binding ability of transcriptional factors to the XPF promoter. The vector construct containing the –357C allele had a lower luciferase expression than did the –357A allele. The –357C allele in the transcription factor-binding site was also associated with decreased expression levels of both XPF mRNA and protein in bladder cancer tissues. Furthermore, patients with the –357C allele had a shorter overall recurrence-free survival than did patients with the –357A allele. Our results suggest that the XPF promoter –357A>C polymorphism may regulate the expression of XPF and thereby contribute to susceptibility to and prognosis of bladder cancer. Further larger studies with different populations are warranted to confirm these findings.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • An J, Liu Z, Hu Z, Li G, Wang LE, Sturgis EM et al. (2007). Potentially functional single nucleotide polymorphisms in the core nucleotide excision repair genes and risk of squamous cell carcinoma of the head and neck. Cancer Epidemiol Biomarkers Prev 16: 1633–1638.

    Article  CAS  PubMed  Google Scholar 

  • Berwick M, Vineis P . (2000). Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst 92: 874–897.

    Article  CAS  PubMed  Google Scholar 

  • Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC et al. (2004). A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119: 591–602.

    Article  CAS  Google Scholar 

  • Bustin M . (2001). Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci 26: 152–153.

    Article  CAS  PubMed  Google Scholar 

  • Bustin M, Reeves R . (1996). High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol 54: 35–100.

    Article  CAS  PubMed  Google Scholar 

  • Cohen SM, Johansson SL . (1992). Epidemiology and etiology of bladder cancer. Urol Clin North Am 19: 421–428.

    CAS  PubMed  Google Scholar 

  • Cohen SM, Shirai T, Steineck G . (2000). Epidemiology and etiology of premalignant and malignant urothelial changes. Scand J Urol Nephrol Suppl 205: 105–115.

    Article  Google Scholar 

  • De Laat WL, Appeldoorn E, Jaspers NG, Hoeijmakers JH . (1998). DNA structural elements required for ERCC1-XPF endonuclease activity. J Biol Chem 273: 7835–7842.

    Article  CAS  PubMed  Google Scholar 

  • Friedberg EC . (2001). How nucleotide excision repair protects against cancer. Nat Rev Cancer 1: 22–33.

    Article  CAS  PubMed  Google Scholar 

  • Frosina G . (2000). Overexpression of enzymes that repair endogenous damage to DNA. Eur J Biochem 267: 2135–2149.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Closas M, Malats N, Real FX, Welch R, Kogevinas M, Chatterjee N et al. (2006). Genetic variation in the nucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15: 536–542.

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Zhao H, Dinney CP, Zhu Y, Leibovici D, Bermejo CE et al. (2005). Nucleotide excision repair gene polymorphisms and recurrence after treatment for superficial bladder cancer. Clin Cancer Res 11: 1408–1415.

    Article  CAS  PubMed  Google Scholar 

  • Han J, Haiman C, Niu T, Guo Q, Cox DG, Willett WC et al. (2008). Genetic variation in DNA repair pathway genes and premenopausal breast cancer risk. Breast Cancer Res Treat 115: 613–622.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hecht SS . (2002). Tobacco smoke carcinogens and breast cancer. Environ Mol Mutagen 39: 119–126.

    Article  CAS  Google Scholar 

  • Kim WJ, Bae SC . (2008). Molecular biomarkers in urothelial bladder cancer. Cancer Sci 99: 646–652.

    Article  CAS  PubMed  Google Scholar 

  • Kornguth DG, Garden AS, Zheng Y, Dahlstrom KR, Wei Q, Sturgis EM . (2005). Gastrostomy in oropharyngeal cancer patients with ERCC4 (XPF) germline variants. Int J Radiat Oncol Biol Phys 62: 665–671.

    Article  PubMed  Google Scholar 

  • Kraemer KH, Lee MM, Andrews AD, Lambert WC . (1994). The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch Dermatol 130: 1018–1021.

    Article  CAS  PubMed  Google Scholar 

  • Kruppa M, Moir RD, Kolodrubetz D, Willis IM . (2001). Nhp6, an HMG1 protein, functions in SNR6 transcription by RNA polymerase III in S. cerevisiae. Mol Cell 7: 309–318.

    Article  CAS  PubMed  Google Scholar 

  • Laser H, Bongards C, Schuller J, Heck S, Johnsson N, Lehming N . (2000). A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter. Proc Natl Acad Sci USA 97: 13732–13737.

    Article  CAS  PubMed  Google Scholar 

  • Lee SA, Lee KM, Park WY, Kim B, Nam J, Yoo KY et al. (2005). Obesity and genetic polymorphism of ERCC2 and ERCC4 as modifiers of risk of breast cancer. Exp Mol Med 37: 86–90.

    Article  CAS  PubMed  Google Scholar 

  • McWilliams RR, Bamlet WR, Cunningham JM, Goode EL, de Andrade M, Boardman LA et al. (2008). Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk. Cancer Res 68: 4928–4935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milne RL, Ribas G, Gonzalez-Neira A, Fagerholm R, Salas A, Gonzalez E et al. (2006). ERCC4 associated with breast cancer risk: a two-stage case-control study using high-throughput genotyping. Cancer Res 66: 9420–9427.

    Article  CAS  PubMed  Google Scholar 

  • Nyholt DR . (2004). A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74: 765–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P . (2005). Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108.

    Article  Google Scholar 

  • Pryor WA, Hales BJ, Premovic PI, Church DF . (1983). The radicals in cigarette tar: their nature and suggested physiological implications. Science 220: 425–427.

    Article  CAS  PubMed  Google Scholar 

  • Shao M, Ma H, Wang Y, Xu L, Yuan J, Wang Y et al. (2008). Polymorphisms in excision repair cross-complementing group 4 (ERCC4) and susceptibility to primary lung cancer in a Chinese Han population. Lung Cancer 60: 332–339.

    Article  PubMed  Google Scholar 

  • Shen M, Berndt SI, Rothman N, Demarini DM, Mumford JL, He X et al. (2005). Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China. Int J Cancer 116: 768–773.

    Article  CAS  PubMed  Google Scholar 

  • Sijbers AM, de Laat WL, Ariza RR, Biggerstaff M, Wei YF, Moggs JG et al. (1996). Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86: 811–822.

    Article  CAS  PubMed  Google Scholar 

  • Smith TR, Levine EA, Perrier ND, Miller MS, Freimanis RI, Lohman K et al. (2003). DNA-repair genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 12: 1200–1204.

    CAS  PubMed  Google Scholar 

  • Stram DO, Haiman CA, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE et al. (2003). Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Hum Hered 55: 27–36.

    Article  PubMed  Google Scholar 

  • Sun T, Gao Y, Tan W, Ma S, Shi Y, Yao J et al. (2007). A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet 39: 605–613.

    Article  CAS  PubMed  Google Scholar 

  • Theodorescu D . (2003). Molecular pathogenesis of urothelial bladder cancer. Histol Histopathol 18: 259–274.

    CAS  PubMed  Google Scholar 

  • Travers AA, Ner SS, Churchill ME . (1994). DNA chaperones: a solution to a persistence problem? Cell 77: 167–169.

    Article  CAS  PubMed  Google Scholar 

  • Tsodikov OV, Enzlin JH, Scharer OD, Ellenberger T . (2005). Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc Natl Acad Sci USA 102: 11236–11241.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zhang Z, Zhu H, Fu G, Wang S, Wu D et al. (2008). A novel functional polymorphism C1797G in the MDM2 promoter is associated with risk of bladder cancer in a Chinese population. Clin Cancer Res 14: 3633–3640.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe F, Teraoka H, Iijima S, Mimori T, Tsukada K . (1994). Molecular properties, substrate specificity and regulation of DNA-dependent protein kinase from Raji Burkitt's lymphoma cells. Biochim Biophys Acta 1223: 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Winsey SL, Haldar NA, Marsh HP, Bunce M, Marshall SE, Harris AL et al. (2000). A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer. Cancer Res 60: 5612–5616.

    CAS  PubMed  Google Scholar 

  • Wood RD, Mitchell M, Sgouros J, Lindahl T . (2001). Human DNA repair genes. Science 291: 1284–1289.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the National Natural Science Foundation of China (30872084, 30800926 and 30972444), the Key Program for Basic Research of Jiangsu Provincial Department of Education (08KJA330001), ‘Qinglan Project’ Foundation for the Young Academic Leader of Jiangsu Province (Z Zhang), and Jiangsu Provincial Graduates Innovative Project (CX08B-183Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Zhang.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Wang, M., Yuan, L. et al. A novel XPF −357A>C polymorphism predicts risk and recurrence of bladder cancer. Oncogene 29, 1920–1928 (2010). https://doi.org/10.1038/onc.2009.484

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.484

Keywords

This article is cited by

Search

Quick links