Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Alternative splicing of p53 and p73: the novel p53 splice variant p53δ is an independent prognostic marker in ovarian cancer

Abstract

Similar to p73, the tumor suppressor gene p53 is subject to alternative splicing. Besides p53ΔE6 and p53β, we identified p53ζ, p53δ and p53ɛ, arising from alternative splicing of exon 6 and intron 9, respectively. p53 splice variants were present in 18 of 34 ovarian cancer cell lines (52.9%) and 134 of 245 primary ovarian cancers (54.7%). p53δ expression was associated with impaired response to primary platinum-based chemotherapy (P=0.032). Also, p53δ expression constituted an independent prognostic marker for recurrence-free and overall survival (hazard ratio 1.854, 95% confidence interval 1.121–3.065, P=0.016; and hazard ratio 1.937, 95% confidence interval 1.177–3.186, P=0.009, respectively). p53β expression was associated with adverse clinicopathologic markers, that is, serous and poorly differentiated cancers (P=0.002 and P=0.008, respectively), and correlated with worse recurrence-free survival in patients exhibiting functionally active p53 (P=0.049). ΔN′p73 constituted the main N-terminally truncated p73 isoform and was preferentially found in ovarian cancer cell lines showing functionally active p53, supporting our hypothesis that N-terminally truncated p73 isoforms can alleviate the selection pressure for p53 mutations by the inhibition of p53 protein function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anczuków O, Ware MD, Buisson M, Zetoune AB, Stoppa-Lyonnet D, Sinilnikova OM et al. (2008). Does the nonsense-mediated mRNA decay mechanism prevent the synthesis of truncated BRCA1, CHK2, and p53 proteins? Hum Mutat 29: 65–73.

    Article  PubMed  Google Scholar 

  • Avery-Kiejda KA, Zhang XD, Adams LJ, Scott RJ, Vojtesek B, Lane DP et al. (2008). Small molecular weight variants of p53 are expressed in human melanoma cells and are induced by the DNA-damaging agent cisplatin. Clin Cancer Res 14: 1659–1668.

    Article  CAS  PubMed  Google Scholar 

  • Boldrup L, Bourdon JC, Coates PJ, Sjöström B, Nylander K . (2007). Expression of p53 isoforms in squamous cell carcinoma of the head and neck. Eur J Cancer 43: 617–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. (2005). P53 isoforms can regulate p53 transcriptional activity. Genes Dev 19: 2122–2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casciano I, Banelli B, Croce M, Allemani G, Ferrini S, Tonini GP et al. (2002). Epigenetic control of the p73 gene in neuroblastoma. Cell Death Differ 9: 343–345.

    Article  CAS  PubMed  Google Scholar 

  • Chan WM, Siu WY, Lau A, Poon RY . (2004). How many mutant p53 molecules are needed to inactivate a tetramer? Mol Cell Biol 24: 3536–3551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow VT, Quek HH, Tock EP . (1993). Alternative splicing of the p53 tumor suppressor gene in the Molt-4 T-lymphoblastic leukemia cell line. Cancer Lett 73: 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Concin N, Stimpel M, Zeillinger C, Wolff U, Hefler L, Sedlak J et al. (2003). Role of p53 in G2/M cell cycle arrest and apoptosis in response to γ-irradiation in ovarian carcinoma cell lines. Int J Oncol 22: 51–57.

    CAS  PubMed  Google Scholar 

  • Concin N, Becker K, Slade N, Erster S, Mueller-Holzner E, Ulmer H et al. (2004). Transdominant deltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Role for their evidence as epigenetic p53 inhibitors in vivo. Cancer Res 64: 2449–2460.

    Article  CAS  PubMed  Google Scholar 

  • Concin N, Hofstetter G, Berger A, Gehmacher A, Reimer D, Watrowski R et al. (2005). Clinical relevance of dominant-negative p73 isoforms for responsiveness to chemotherapy and survival in ovarian cancer: evidence for a crucial p53-p73 cross-talk in vivo. Clin Cancer Res 11: 8372–8383.

    Article  CAS  PubMed  Google Scholar 

  • Cui R, He J, Mei R, de Fromentel C, Martel-Planche G, Taniere P et al. (2005). Expression of p53, p63 and p73 isoforms in squamous cell carcinoma and adenocarcinoma of esophagus. Biochem Biophys Res Commun 336: 339–345.

    Article  PubMed  Google Scholar 

  • Duddy PM, Hanby AM, Barnes DM, Camplejohn RS . (2000). Improving the detection of p53 mutations in breast cancer by use of the FASAY, a functional assay. J Mol Diagn 2: 139–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi M, Boldrup L, Coates PJ, Wahlin YB, Bourdon JC, Nylander K . (2008). Expression of novel p53 isoforms in oral lichen planus. Oral Oncol 44: 156–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flaman JM, Frebourg T, Moreau V, Charbonnier F, Martin C, Chappuis P et al. (1995). A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci USA 92: 3963–3967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontemaggi G, Aymone Gurtner A, Strano S, Higashi Y, Sacchi A, Piaggio G et al. (2001). The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Mol Cell Biol 21: 8461–8470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer DC, Noack K, Runnebaum IB, Watermann DO, Kieback DG, Stamm S et al. (2004). Expression of splicing factors in human ovarian cancer. Oncol Rep 11: 1085–1090.

    CAS  PubMed  Google Scholar 

  • Graupner V, Schulze-Osthoff K, Essmann R, Jänicke RU . (2009). Functional characterization of p53β and p53γ, two isoforms of the tumor supressor p53. Cell Cycle 8: 1238–1248.

    Article  CAS  PubMed  Google Scholar 

  • Guan M, Chen Y . (2005). Aberrant expression of deltaNp73 in benign and malignant tumours of the prostate: a correlation with Gleason score. J Clin Pathol 58: 1175–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmila R, Fouquet C, Cadranel J, Zalcman G, Soussi T . (2003). Splice mutations in the p53 gene: case report and review of the literature. Hum Mut 21: 101–102.

    Article  CAS  PubMed  Google Scholar 

  • Jänicke RU, Graupner V, Budach W, Essmann F . (2009). The do's and don'ts of p53 isoforms. Biol Chem 390: 951–963.

    Article  PubMed  Google Scholar 

  • Jolly KW, Malkin D, Douglass EC, Brown TF, Sinclair AE, Look AT . (1994). Splice-site mutation of the p53 gene in a family with hereditary breast-ovarian cancer. Oncogene 9: 97–102.

    CAS  PubMed  Google Scholar 

  • Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP et al. (2007). The diploid genome sequence of an individual human. PLoS Biol 5: e254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Magnusson KP, Sandstrom M, Stahlberg M, Larsson M, Flygare J, Hellgren D et al. (2000). P53 splice acceptor site mutation and increased HsRAD51 protein expression in Bloom's syndrome GM1492 fibroblasts. Gene 246: 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Marabese M, Marchini S, Marrazzo E, Mariani P, Cattaneo D, Fossati R et al. (2008). Expression levels of p53 and p73 isoforms in stage I and stage III ovarian cancer. Eur J Cancer 44: 131–141.

    Article  CAS  PubMed  Google Scholar 

  • Mobus V, Gerharz CD, Press U, Moll R, Beck T, Mellin W et al. (1992). Morphological, immunohistochemical and biochemical characterization of 6 newly established ovarian carcinoma cell lines. Int J Cancer 52: 76–84.

    Article  CAS  PubMed  Google Scholar 

  • Oswald C, Stiewe T . (2008). In good times and bad: p73 in cancer. Cell Cycle 7: 1726–1731.

    Article  CAS  PubMed  Google Scholar 

  • Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. (2007). Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28: 622–629.

    Article  CAS  PubMed  Google Scholar 

  • Slade N, Zaika AI, Erster S, Moll UM . (2004). DeltaNp73 stabilises TAp73 proteins but compromises their function due to inhibitory hetero-oligomer formation. Cell Death Differ 11: 357–360.

    Article  CAS  PubMed  Google Scholar 

  • Stiewe T, Tuve S, Peter M, Tannapfel A, Elmaagacli AH, Pützer BM . (2004). Quantitative TP73 transcript analysis in hepatocellular carcinomas. Clin Cancer Res 10: 626–633.

    Article  CAS  PubMed  Google Scholar 

  • Yaginuma Y, Westphal H . (1992). Abnormal structure and expression of the p53 gene in human ovarian carcinoma cell lines. Cancer Res 52: 4196–4199.

    CAS  PubMed  Google Scholar 

  • Yu Y, Baron V, Mercola D, Mustelin T, Adamson ED . (2007). A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ 14: 436–446.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Andrea Wolf for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Zeillinger.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofstetter, G., Berger, A., Fiegl, H. et al. Alternative splicing of p53 and p73: the novel p53 splice variant p53δ is an independent prognostic marker in ovarian cancer. Oncogene 29, 1997–2004 (2010). https://doi.org/10.1038/onc.2009.482

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.482

Keywords

This article is cited by

Search

Quick links