Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thyroid hormone receptors are tumor suppressors in a mouse model of metastatic follicular thyroid carcinoma

Abstract

Aberrant expression and mutations of thyroid hormone receptor genes (TRs) are closely associated with several types of human cancers. To test the hypothesis that TRs could function as tumor suppressors, we took advantage of mice with deletion of all functional TRs (TRα1−/−TRβ−/− mice). As these mice aged, they spontaneously developed follicular thyroid carcinoma with pathological progression from hyperplasia to capsular invasion, vascular invasion, anaplasia and metastasis to the lung, similar to human thyroid cancer. Detailed molecular analysis revealed that known tumor promoters such as pituitary tumor-transforming gene were activated and tumor suppressors such as peroxisome proliferator-activated receptor γ and p53 were suppressed during carcinogenesis. In addition, consistent with the human cancer, AKT–mTOR–p70S6K signaling and vascular growth factor and its receptor were activated to facilitate tumor progression. This report presents in vivo evidence that functional loss of both TRα1 and TRβ genes promotes tumor development and metastasis. Thus, TRs could function as tumor suppressors in a mouse model of metastatic follicular thyroid cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ando S, Sarlis NJ, Krishnan J, Feng X, Refetoff S, Zhang MQ et al. (2001a). Aberrant alternative splicing of thyroid hormone receptor in a TSH-secreting pituitary tumor is a mechanism for hormone resistance. Mol Endocrinol 15: 1529–1538.

    Article  CAS  PubMed  Google Scholar 

  • Ando S, Sarlis NJ, Oldfield EH, Yen PM . (2001b). Somatic mutation of TRbeta can cause a defect in negative regulation of TSH in a TSH-secreting pituitary tumor. J Clin Endocrinol Metab 86: 5572–5576.

    CAS  PubMed  Google Scholar 

  • Brinckerhoff CE, Matrisian LM . (2002). Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3: 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Chen HW, Privalsky ML . (1993). The erbA oncogene represses the actions of both retinoid X and retinoid A receptors but does so by distinct mechanisms. Mol Cell Biol 13: 5970–5980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis PJ, Leonard JL, Davis FB . (2008). Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29: 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Fagin JA . (2002). Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol Endocrinol 16: 903–911.

    CAS  PubMed  Google Scholar 

  • Forrest D, Erway LC, Ng L, Altschuler R, Curran T . (1996a). Thyroid hormone receptor beta is essential for development of auditory function. Nat Genet 13: 354–357.

    Article  CAS  PubMed  Google Scholar 

  • Forrest D, Hanebuth E, Smeyne RJ, Everds N, Stewart CL, Wehner JM et al. (1996b). Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J 15: 3006–3015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest D, Vennstrom B . (2000). Functions of thyroid hormone receptors in mice. Thyroid 10: 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Furumoto H, Ying H, Chandramouli GV, Zhao L, Walker RL, Meltzer PS et al. (2005). An unliganded thyroid hormone beta receptor activates the cyclin D1/cyclin-dependent kinase/retinoblastoma/E2F pathway and induces pituitary tumorigenesis. Mol Cell Biol 25: 124–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuya F, Lu C, Guigon CJ, Cheng SY . (2009). Nongenomic activation of phosphatidylinositol 3-kinase signaling by thyroid hormone receptors. Steroids 74: 628–634.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Silva S, Aranda A . (2004). The thyroid hormone receptor is a suppressor of ras-mediated transcription, proliferation, and transformation. Mol Cell Biol 24: 7514–7523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gothe S, Wang Z, Ng L, Kindblom JM, Barros AC, Ohlsson C et al. (1999). Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev 13: 1329–1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guigon CJ, Zhao L, Lu C, Willingham MC, Cheng SY . (2008). Regulation of beta-catenin by a novel nongenomic action of thyroid hormone beta receptor. Mol Cell Biol 28: 4598–4608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaney AP, Nelson V, Fernando M, Horwitz G . (2001). Transforming events in thyroid tumorigenesis and their association with follicular lesions. J Clin Endocrinol Metab 86: 5025–5032.

    Article  CAS  PubMed  Google Scholar 

  • Herwig S, Strauss M . (1997). The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur J Biochem 246: 581–601.

    Article  CAS  PubMed  Google Scholar 

  • Kamiya Y, Puzianowska-Kuznicka M, McPhie P, Nauman J, Cheng SY, Nauman A . (2002). Expression of mutant thyroid hormone nuclear receptors is associated with human renal clear cell carcinoma. Carcinogenesis 23: 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA et al. (2000). Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA 97: 13209–13214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Ying H, Willingham MC, Cheng SY . (2004). A tumor suppressor role for thyroid hormone beta receptor in a mouse model of thyroid carcinogenesis. Endocrinology 145: 4430–4438.

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Ying H, Zhao L, Furuya F, Araki O, Willingham MC et al. (2006). PPARgamma insufficiency promotes follicular thyroid carcinogenesis via activation of the nuclear factor-kappaB signaling pathway. Oncogene 25: 2736–2747.

    Article  CAS  PubMed  Google Scholar 

  • Kim CS, Ying H, Willingham MC, Cheng SY . (2007). The pituitary tumor-transforming gene promotes angiogenesis in a mouse model of follicular thyroid cancer. Carcinogenesis 28: 932–939.

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Franklyn JA, Boelaert K, Eggo MC, Watkinson JC, McCabe CJ . (2006). Pituitary tumor transforming gene (PTTG) stimulates thyroid cell proliferation via a vascular endothelial growth factor/kinase insert domain receptor/inhibitor of DNA binding-3 autocrine pathway. J Clin Endocrinol Metab 91: 4603–4611.

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, McCabe CJ, Buchanan MA, Watkinson JC . (2003). Oncogenes in thyroid cancer. Clin Otolaryngol Allied Sci 28: 386–395.

    Article  CAS  PubMed  Google Scholar 

  • Lawal O, Agbakwuru A, Olayinka OS, Adelusola K . (2001). Thyroid malignancy in endemic nodular goitres: prevalence, pattern and treatment. Eur J Surg Oncol 27: 157–161.

    Article  CAS  PubMed  Google Scholar 

  • Ledent C, Dumont JE, Vassart G, Parmentier M . (1992). Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism. EMBO J 11: 537–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Meng ZH, Chandrasekaran R, Kuo WL, Collins CC, Gray JW et al. (2002). Biallelic inactivation of the thyroid hormone receptor beta1 gene in early stage breast cancer. Cancer Res 62: 1939–1943.

    CAS  PubMed  Google Scholar 

  • Lin KH, Shieh HY, Chen SL, Hsu HC . (1999). Expression of mutant thyroid hormone nuclear receptors in human hepatocellular carcinoma cells. Mol Carcinog 26: 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Chung YS, Takatsuka S, Ogawa Y, Sawada T, Yamashita Y et al. (1995). Tumor angiogenesis as a predictor of recurrence in gastric carcinoma. J Clin Oncol 13: 477–481.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Iglesias O, Garcia-Silva S, Tenbaum SP, Regadera J, Larcher F, Paramio JM et al. (2009). Thyroid hormone receptor beta1 acts as a potent suppressor of tumor invasiveness and metastasis. Cancer Res 69: 501–509.

    Article  CAS  PubMed  Google Scholar 

  • McCabe CJ, Boelaert K, Tannahill LA, Heaney AP, Stratford AL, Khaira JS et al. (2002). Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab 87: 4238–4244.

    Article  CAS  PubMed  Google Scholar 

  • Meier CA, Dickstein BM, Ashizawa K, McClaskey JH, Muchmore P, Ransom SC et al. (1992). Variable transcriptional activity and ligand binding of mutant beta 1 3,5,3′-triiodothyronine receptors from four families with generalized resistance to thyroid hormone. Mol Endocrinol 6: 248–258.

    CAS  PubMed  Google Scholar 

  • Michiels FM, Caillou B, Talbot M, Dessarps-Freichey F, Maunoury MT, Schlumberger M et al. (1994). Oncogenic potential of guanine nucleotide stimulatory factor alpha subunit in thyroid glands of transgenic mice. Proc Natl Acad Sci USA 91: 10488–10492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyakawa M, Tsushima T, Murakami H, Wakai K, Isozaki O, Takano K . (2003). Increased expression of phosphorylated p70S6 kinase and Akt in papillary thyroid cancer tissues. Endocr J 50: 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Pei L, Melmed S . (1997). Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 11: 433–441.

    Article  CAS  PubMed  Google Scholar 

  • Persad S, Dedhar S . (2003). The role of integrin-linked kinase (ILK) in cancer progression. Cancer Metastasis Rev 22: 375–384.

    Article  CAS  PubMed  Google Scholar 

  • Puzianowska-Kuznicka M, Krystyniak A, Madej A, Cheng SY, Nauman J . (2002). Functionally impaired TR mutants are present in thyroid papillary cancer. J Clin Endocrinol Metab 87: 1120–1128.

    Article  CAS  PubMed  Google Scholar 

  • Puzianowska-Kuznicka M, Nauman A, Madej A, Tanski Z, Cheng S, Nauman J . (2000). Expression of thyroid hormone receptors is disturbed in human renal clear cell carcinoma. Cancer Lett 155: 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Puzianowska-Kuznicka M, Pietrzak M, Turowska O, Nauman A . (2006). Thyroid hormones and their receptors in the regulation of cell proliferation. Acta Biochim Pol 53: 641–650.

    CAS  PubMed  Google Scholar 

  • Ringel MD, Hayre N, Saito J, Saunier B, Schuppert F, Burch H et al. (2001). Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res 61: 6105–6111.

    CAS  PubMed  Google Scholar 

  • Safer JD, Colan SD, Fraser LM, Wondisford FE . (2001). A pituitary tumor in a patient with thyroid hormone resistance: a diagnostic dilemma. Thyroid 11: 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A et al. (1986). The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324: 635–640.

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA . (2002). p53: good cop/bad cop. Cell 110: 9–12.

    Article  CAS  PubMed  Google Scholar 

  • Shen WT, Chung WY . (2005). Treatment of thyroid cancer with histone deacetylase inhibitors and peroxisome proliferator-activated receptor-gamma agonists. Thyroid 15: 594–599.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Willingham MC, Cheng SY . (2002). Mice with a mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. Thyroid 12: 963–969.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Zhang XY, Forrest D, Willingham MC, Cheng SY . (2003). Marked potentiation of the dominant negative action of a mutant thyroid hormone receptor beta in mice by the ablation of one wild-type beta allele. Mol Endocrinol 17: 895–907.

    Article  CAS  PubMed  Google Scholar 

  • Takano T, Miyauchi A, Yoshida H, Nakata Y, Kuma K, Amino N . (2003). Expression of TRbeta1 mRNAs with functionally impaired mutations is rare in thyroid papillary carcinoma. J Clin Endocrinol Metab 88: 3447–3449.

    Article  CAS  PubMed  Google Scholar 

  • Teresi RE, Waite KA . (2008). PPARgamma, PTEN, and the fight against cancer. PPAR Res 2008: 932632.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thormeyer D, Baniahmad A . (1999). The v-erbA oncogene (review). Int J Mol Med 4: 351–358.

    CAS  PubMed  Google Scholar 

  • Troussard AA, Costello P, Yoganathan TN, Kumagai S, Roskelley CD, Dedhar S . (2000). The integrin linked kinase (ILK) induces an invasive phenotype via AP-1 transcription factor-dependent upregulation of matrix metalloproteinase 9 (MMP-9). Oncogene 19: 5444–5452.

    Article  CAS  PubMed  Google Scholar 

  • Troussard AA, Mawji NM, Ong C, Mui A, St -Arnaud R, Dedhar S . (2003). Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J Biol Chem 278: 22374–22378.

    Article  CAS  PubMed  Google Scholar 

  • Turpeenniemi-Hujanen T . (2005). Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie 87: 287–297.

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Ohshima M . (1986). The role of iodine in carcinogenesis. Adv Exp Med Biol 206: 529–542.

    CAS  PubMed  Google Scholar 

  • Weidner N, Semple JP, Welch WR, Folkman J . (1991). Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med 324: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM . (1986). The c-erb-A gene encodes a thyroid hormone receptor. Nature 324: 641–646.

    Article  CAS  PubMed  Google Scholar 

  • Weiss RE, Refetoff S . (2000). Resistance to thyroid hormone. Rev Endocr Metab Disord 1: 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Wikstrom L, Johansson C, Salto C, Barlow C, Campos Barros A, Baas F et al. (1998). Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J 17: 455–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen PM, Ikeda M, Brubaker JH, Forgione M, Sugawara A, Chin WW . (1994). Roles of v-erbA homodimers and heterodimers in mediating dominant negative activity by v-erbA. J Biol Chem 269: 903–909.

    CAS  PubMed  Google Scholar 

  • Ying H, Furuya F, Zhao L, Araki O, West BL, Hanover JA et al. (2006). Aberrant accumulation of PTTG1 induced by a mutated thyroid hormone beta receptor inhibits mitotic progression. J Clin Invest 116: 2972–2984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying H, Suzuki H, Furumoto H, Walker R, Meltzer P, Willingham MC et al. (2003a). Alterations in genomic profiles during tumor progression in a mouse model of follicular thyroid carcinoma. Carcinogenesis 24: 1467–1479.

    Article  CAS  PubMed  Google Scholar 

  • Ying H, Suzuki H, Zhao L, Willingham MC, Meltzer P, Cheng SY . (2003b). Mutant thyroid hormone receptor beta represses the expression and transcriptional activity of peroxisome proliferator-activated receptor gamma during thyroid carcinogenesis. Cancer Res 63: 5274–5280.

    CAS  PubMed  Google Scholar 

  • Zeiger MA, Saji M, Gusev Y, Westra WH, Takiyama Y, Dooley WC et al. (1997). Thyroid-specific expression of cholera toxin A1 subunit causes thyroid hyperplasia and hyperthyroidism in transgenic mice. Endocrinology 138: 3133–3140.

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Kaneshige M, Kamiya Y, Kaneshige K, McPhie P, Cheng SY . (2002). Differential expression of thyroid hormone receptor isoforms dictates the dominant negative activity of mutant Beta receptor. Mol Endocrinol 16: 2077–2092.

    Article  CAS  PubMed  Google Scholar 

  • Zimonjic DB, Kato Y, Ying H, Popescu NC, Cheng SY . (2005). Chromosomal aberrations in cell lines derived from thyroid tumors spontaneously developed in TRbetaPV/PV mice. Cancer Genet Cytogenet 161: 104–109.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, National Institutes of Health. We thank Drs H Ying and Y Kato for the analyses of survival curves and thyroid growth in the early phase of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-Y Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, XG., Zhao, L., Willingham, M. et al. Thyroid hormone receptors are tumor suppressors in a mouse model of metastatic follicular thyroid carcinoma. Oncogene 29, 1909–1919 (2010). https://doi.org/10.1038/onc.2009.476

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.476

Keywords

This article is cited by

Search

Quick links