Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TGFβ-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3

Abstract

To identify microRNAs (miRNAs) that may have a causal role in hepatocarcinogenesis, we used an animal model in which C57BL/6 mice fed choline-deficient and amino acid defined (CDAA) diet develop preneoplastic lesions at 65 weeks and hepatocellular carcinomas after 84 weeks. miRNA expression profiling showed significant upregulation of miR-181b and miR-181d in the livers of mice as early as 32 weeks that persisted at preneoplastic stage. The expression of tissue inhibitor of metalloprotease 3 (TIMP3), a tumor suppressor and a validated miR-181 target, was markedly suppressed in the livers of mice fed CDAA diet. Upregulation of hepatic transforming growth factor (TGF)β and its downstream mediators Smad 2, 3 and 4 and increase in phospho-Smad2 in the liver nuclear extract correlated with elevated miR-181b/d in mice fed CDAA diet. The levels of the precursor and mature miR-181b were augmented on exposure of hepatic cells to TGFβ and were significantly reduced by small interference RNA-mediated depletion of Smad4, showing the involvement of TGFβ signaling pathway in miR-181b expression. Ectopic expression and depletion of miR-181b showed that miR-181b enhanced matrix metallopeptidases (MMP)2 and MMP9 activity and promoted growth, clonogenic survival, migration and invasion of hepatocellular carcinoma (HCC) cells that could be reversed by modulating TIMP3 level. Further, depletion of miR-181b inhibited tumor growth of HCC cells in nude mice. miR-181b also enhanced resistance of HCC cells to the anticancer drug doxorubicin. On the basis of these results, we conclude that upregulation of miR-181b at early stages of feeding CDAA diet promotes hepatocarcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aravalli RN, Steer CJ, Cressman EN . (2008). Molecular mechanisms of hepatocellular carcinoma. Hepatology 48: 2047–2063.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Pekarsky Y, Croce CM . (2007). The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. Best Pract Res Clin Haematol 20: 425–437.

    Article  CAS  PubMed  Google Scholar 

  • Carthew RW, Sontheimer EJ . (2009). Origins and mechanisms of miRNAs and siRNAs. Cell 136: 642–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW et al. (2008). Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression. Hepatology 48: 1810–1820.

    Article  CAS  PubMed  Google Scholar 

  • Coulouarn C, Factor VM, Thorgeirsson SS . (2008). Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology 47: 2059–2067.

    Article  CAS  PubMed  Google Scholar 

  • Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S et al. (2008). Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68: 5049–5058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BN, Hilyard AC, Lagna G, Hata A . (2008). SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454: 56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day CP . (2006). Genes or environment to determine alcoholic liver disease and non-alcoholic fatty liver disease. Liver Int 26: 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  • Denda A, Kitayama W, Kishida H, Murata N, Tsutsumi M, Tsujiuchi T et al. (2002). Development of hepatocellular adenomas and carcinomas associated with fibrosis in C57BL/6J male mice given a choline-deficient, L-amino acid-defined diet. Jpn J Cancer Res 93: 125–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Serag HB, Rudolph KL . (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132: 2557–2576.

    Article  CAS  PubMed  Google Scholar 

  • Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature 452: 896–899.

    Article  CAS  PubMed  Google Scholar 

  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3: 87–98.

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E . (2008). Getting to the root of miRNA-mediated gene silencing. Cell 132: 9–14.

    Article  CAS  PubMed  Google Scholar 

  • Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS et al. (2008). MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28: 5369–5380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghoshal K, Li X, Datta J, Bai S, Pogribny I, Pogribny M et al. (2006). A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. J Nutr 136: 1522–1527.

    Article  CAS  PubMed  Google Scholar 

  • Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C et al. (2009). Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 50: 472–480.

    Article  CAS  PubMed  Google Scholar 

  • Kim VN, Han J, Siomi MC . (2009). Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10: 126–139.

    Article  CAS  PubMed  Google Scholar 

  • Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS et al. (2008). MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28: 6773–6784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685–689.

    Article  PubMed  Google Scholar 

  • Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL et al. (2007). Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120: 1046–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Massague J . (2008). TGFbeta in Cancer. Cell 134: 215–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menghini R, Menini S, Amoruso R, Fiorentino L, Casagrande V, Marzano V et al. (2009). Tissue inhibitor of metalloproteinase 3 deficiency causes hepatic steatosis and adipose tissue inflammation in mice. Gastroenterology 136: 663–672 e4.

    Article  CAS  PubMed  Google Scholar 

  • Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL et al. (2008). MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283: 29897–29903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed FF, Smookler DS, Taylor SE, Fingleton B, Kassiri Z, Sanchez OH et al. (2004). Abnormal TNF activity in Timp3−/− mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet 36: 969–977.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K et al. (2006). Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 3: 317–324.

    CAS  PubMed  Google Scholar 

  • Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S et al. (2008). Down-regulation of micro-RNA-1 (miR-1) in lung cancer Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem 283: ##33405.

  • Schickel R, Boyerinas B, Park SM, Peter ME . (2008). MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27: 5959–5974.

    Article  CAS  PubMed  Google Scholar 

  • Selaru FM, Olaru AV, Kan T, David S, Cheng Y, Mori Y et al. (2009). MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 49: 1595–1601.

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z et al. (2008). hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 1236: 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Soifer HS, Rossi JJ, Saetrom P . (2007). MicroRNAs in disease and potential therapeutic applications. Mol Ther 15: 2070–2079.

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zhang Y, Yang G, Chen X, Cao G, Wang J et al. (2008). Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 36: 2690–2699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas M . (2009). Molecular targeted therapy for hepatocellular carcinoma. J Gastroenterol 44 (Suppl 19): 136–141.

    Article  CAS  PubMed  Google Scholar 

  • Visone R, Croce CM . (2009). MiRNAs and cancer. Am J Pathol 174: 1131–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T et al. (2009). Role of miR-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid defined diet in C57BL/6 mice. Hepatology 50: 1152–1161 doi 10 1002/hep.23100.

    Article  CAS  PubMed  Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S . (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11: 228–234.

    Article  CAS  PubMed  Google Scholar 

  • Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL et al. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14: 2348–2360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs David P Bartel and John Taylor for pIS0 vectors and Huh-7 cells, respectively. This work was supported by the grants CA086978 and CA101956 from National Institutes of Health. Grant support: CA086978 and CA101956 from National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S T Jacob or K Ghoshal.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Hsu, SH., Majumder, S. et al. TGFβ-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29, 1787–1797 (2010). https://doi.org/10.1038/onc.2009.468

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.468

Keywords

This article is cited by

Search

Quick links