Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors

Abstract

Increased activity of MYC protein-family members is a common feature in many cancers. Using neuroblastoma as a tumor model, we established a microRNA (miRNA) signature for activated MYCN/c-MYC signaling in two independent primary neuroblastoma tumor cohorts and provide evidence that c-MYC and MYCN have overlapping functions. On the basis of an integrated approach including miRNA and messenger RNA (mRNA) gene expression data we show that miRNA activation contributes to widespread mRNA repression, both in c-MYC- and MYCN-activated tumors. c-MYC/MYCN-induced miRNA activation was shown to be dependent on c-MYC/MYCN promoter binding as evidenced by chromatin immunoprecipitation. Finally, we show that pathways, repressed through c-MYC/MYCN miRNA activation, are highly correlated to tumor aggressiveness and are conserved across different tumor entities suggesting that c-MYC/MYCN activate a core set of miRNAs for cooperative repression of common transcriptional programs related to disease aggressiveness. Our results uncover a widespread correlation between miRNA activation and c-MYC/MYCN-mediated coding gene expression modulation and further substantiate the overlapping functions of c-MYC and MYCN in the process of tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adhikary S, Eilers M . (2005). Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6: 635–645.

    Article  CAS  PubMed  Google Scholar 

  • Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . (2008). The impact of microRNAs on protein output. Nature 455: 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. (2006). Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439: 353–357.

    Article  CAS  PubMed  Google Scholar 

  • Cappellen D, Schlange T, Bauer M, Maurer F, Hynes NE . (2007). Novel c-MYC target genes mediate differential effects on cell proliferation and migration. EMBO Rep 8: 70–76.

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Liu YC, Cleveland RP, Perkins SL . (2000). Expression of c-Myc and p53 correlates with clinical outcome in diffuse large B-cell lymphomas. Am J Clin Pathol 113: 512–518.

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40: 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Stallings RL . (2007). Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 67: 976–983.

    Article  CAS  PubMed  Google Scholar 

  • Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38: 1060–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M et al. (2008). Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One 3: e2236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fredlund E, Ringner M, Maris JM, Pahlman S . (2008). High Myc pathway activity and low stage of neuronal differentiation associate with poor outcome in neuroblastoma. Proc Natl Acad Sci USA 105: 14094–14099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gartel AL . (2006). A new mode of transcriptional repression by c-myc: methylation. Oncogene 25: 1989–1990.

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhu K, Grenet J, Lahti JM . (2008). Retinoic acid induces caspase-8 transcription via phospho-CREB and increases apoptotic responses to death stimuli in neuroblastoma cells. Biochim Biophys Acta 1783: 1055–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleine-Kohlbrecher D, Adhikary S, Eilers M . (2006). Mechanisms of transcriptional repression by Myc. Curr Top Microbiol Immunol 302: 51–62.

    CAS  PubMed  Google Scholar 

  • Kramer MH, Hermans J, Wijburg E, Philippo K, Geelen E, van Krieken JH et al. (1998). Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood 92: 3152–3162.

    CAS  PubMed  Google Scholar 

  • Landais S, Landry S, Legault P, Rassart E . (2007). Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res 67: 5699–5707.

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Samaco RC, Gatchel JR, Thaller C, Orr HT, Zoghbi HY . (2008). miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci 11: 1137–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al. (2008). Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 359: 2313–2323.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ringner M . (2007). Revealing signaling pathway deregulation by using gene expression signatures and regulatory motif analysis. Genome Biol 8: R77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malynn BA, de Alboran IM, O'Hagan RC, Bronson R, Davidson L, DePinho RA et al. (2000). N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev 14: 1390–1399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mestdagh P, Feys T, Bernard N, Guenther S, Chen C, Speleman F et al. (2008). High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res 36: e143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F et al. (2009). A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10: R64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Northcott PA, Fernandez LA, Hagan JP, Ellison DW, Grajkowska W, Gillespie Y et al. (2009). The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res 69: 3249–3255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  CAS  PubMed  Google Scholar 

  • Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R et al. (2006). Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 24: 5070–5078.

    Article  CAS  PubMed  Google Scholar 

  • Park DS, Razani B, Lasorella A, Schreiber-Agus N, Pestell RG, Iavarone A et al. (2001). Evidence that Myc isoforms transcriptionally repress caveolin-1 gene expression via an INR-dependent mechanism. Biochemistry 40: 3354–3362.

    Article  CAS  PubMed  Google Scholar 

  • Peterson S, Bogenmann E . (2004). The RET and TRKA pathways collaborate to regulate neuroblastoma differentiation. Oncogene 23: 213–225.

    Article  CAS  PubMed  Google Scholar 

  • Saito-Ohara F, Imoto I, Inoue J, Hosoi H, Nakagawara A, Sugimoto T et al. (2003). PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res 63: 1876–1883.

    CAS  PubMed  Google Scholar 

  • Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. (2007). MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67: 9762–9770.

    Article  CAS  PubMed  Google Scholar 

  • Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF et al. (2008). MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112: 4202–4212.

    Article  CAS  PubMed  Google Scholar 

  • Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers UC et al. (2008). MYCN regulates oncogenic microRNAs in neuroblastoma. Int J Cancer 122: 699–704.

    Article  CAS  PubMed  Google Scholar 

  • Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY et al. (1985). Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313: 1111–1116.

    Article  CAS  PubMed  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58–63.

    Article  CAS  PubMed  Google Scholar 

  • Stupack DG, Teitz T, Potter MD, Mikolon D, Houghton PJ, Kidd VJ et al. (2006). Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439: 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Wu J, Wu SH, Thakur A, Bollig A, Huang Y et al. (2008). Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Res Treat 118: 185–196.

    Article  PubMed  Google Scholar 

  • Tan LP, Seinen E, Duns G, de Jong D, Sibon OC, Poppema S et al. (2009). A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res 37: e137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Roy N, Laureys G, Cheng NC, Willem P, Opdenakker G, Versteeg R et al. (1994). 1;17 translocations and other chromosome 17 rearrangements in human primary neuroblastoma tumors and cell lines. Genes Chromosomes Cancer 10: 103–114.

    Article  CAS  PubMed  Google Scholar 

  • Van Roy N, Vandesompele J, Menten B, Nilsson H, De Smet E, Rocchi M et al. (2006). Translocation-excision-deletion-amplification mechanism leading to nonsyntenic coamplification of MYC and ATBF1. Genes Chromosomes Cancer 45: 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, Edsjo A, De Preter K, Axelson H, Speleman F, Pahlman S . (2003). ID2 expression in neuroblastoma does not correlate to MYCN levels and lacks prognostic value. Oncogene 22: 456–460.

    Article  CAS  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Diskin S, Rappaport E, Attiyeh E, Mosse Y, Shue D et al. (2006). Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number. Cancer Res 66: 6050–6062.

    Article  CAS  PubMed  Google Scholar 

  • Watters JW, Roberts CJ . (2006). Developing gene expression signatures of pathway deregulation in tumors. Mol Cancer Ther 5: 2444–2449.

    Article  CAS  PubMed  Google Scholar 

  • Westermann F, Muth D, Benner A, Bauer T, Henrich KO, Oberthuer A et al. (2008). Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol 9: R150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeller KI, Jegga AG, Aronow BJ, O'Donnell KA, Dang CV . (2003). An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4: R69.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Q Wang and J Maris for providing the neuroblastoma microarray data set. This research was funded by the Gent University Research Fund (BOF 01D31406 to PM, BOF 01F07207 to FP, BOF 01Z09407 to J Vandesompele), the Fondation pour la recherche Nuovo-Soldati (J Vermeulen), RD06/0020/0102 from RTICC/ISCIII to RN, the Fund for Scientific Research (grant number: G.0198.08 and 31511809), the Belgian Kid's Fund and the Stichting tegen Kanker. KDP is a post-doctoral researcher with the Fund for Scientific Research-Flanders. We acknowledge the support of the European Community under the FP6 (project: STREP: EET-pipeline, number: 037260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Vandesompele.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mestdagh, P., Fredlund, E., Pattyn, F. et al. MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 29, 1394–1404 (2010). https://doi.org/10.1038/onc.2009.429

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.429

Keywords

This article is cited by

Search

Quick links