Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Calpain regulates sensitivity to trastuzumab and survival in HER2-positive breast cancer

Abstract

Resistance to anti-HER2 (human epithelial growth factor receptor 2) trastuzumab therapy occurs commonly in HER2-positive breast cancer and involves overactivation of HER2 and/or AKT1. Using the model of trastuzumab-sensitive or trastuzumab-resistant HER2-positive cells with wild-type PTEN, negative regulator of AKT1, we explore the involvement of cysteine protease calpain in mechanisms of trastuzumab resistance. Overexpression of calpain1 or activation of endogenous calpain during adhesion or trastuzumab treatment of trastuzumab-sensitive cells induces cleavage of cytoplasmic domains of HER2/phospho-HER2; cleavage occurs in HER2-positive tumors. Expression of the catalytically inactive mutant of calpain1 reduces the cleavage to enhance the activity of HER2, inactivates PTEN to enhance the activation of AKT1, induces desensitization to trastuzumab and promotes survival of trastuzumab-sensitive cells. In the model of trastuzumab resistance, constitutive overactivation of HER2 and AKT1 correlates with reduced activation of calpain. Moreover, inhibitors of the catalytic site of calpain reduce the increase in constitutive activity of AKT1 and survival of trastuzumab-resistant cells selectively. Together, by regulating the activation of HER2 and PTEN/AKT1, calpain regulates trastuzumab sensitivity and survival, and the deregulation of the activation of calpain promotes trastuzumab resistance. Trastuzumab-resistant cells activate AKT1 in a mechanism dependent on the residual calpain activity, inhibition of which restores trastuzumab sensitivity and rescues resistance. These data identify calpain as a new therapeutic target in HER2-positive breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Anastasi S, Sala G, Huiping C, Caprini E, Russo G, Iacovelli S et al. (2005). Loss of RALT/MIG-6 expression in ERBB2-amplified breast carcinomas enhances ErbB-2 oncogenic potency and favors resistance to Herceptin. Oncogene 24: 4540–4548.

    Article  CAS  PubMed  Google Scholar 

  • Anido J, Scaltriti M, Bech Serra JJ, Santiago Josefat B, Todo FR, Baselga J et al. (2006). Biosynthesis of tumorigenic HER2 C-terminal fragments by alternative initiation of translation. EMBO J 25: 3234–3244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arthur JS, Elce JS, Hegadorn C, Williams K, Greer PA . (2000). Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol 20: 4474–4481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K et al. (2007). A functional genetic approach identifies the PI3 K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12: 395–402.

    Article  CAS  PubMed  Google Scholar 

  • Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM et al. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448: 439–444.

    Article  CAS  PubMed  Google Scholar 

  • Chan CT, Metz MZ, Kane SE . (2005). Differential sensitivities of trastuzumab (Herceptin)-resistant human breast cancer cells to phosphoinositide-3 kinase (PI-3 K) and epidermal growth factor receptor (EGFR) kinase inhibitors. Breast Cancer Res Treat 91: 187–201.

    Article  CAS  PubMed  Google Scholar 

  • Clark AS, West K, Streicher S, Dennis PA . (2002). Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 1: 707–717.

    CAS  PubMed  Google Scholar 

  • Edelstein CL . (2000). Calpain activity in rat renal proximal tubules. An in vitro assay. Methods Mol Biol 144: 233–238.

    CAS  PubMed  Google Scholar 

  • Fox JE, Taylor RG, Taffarel M, Boyles JK, Goll DE . (1993). Evidence that activation of platelet calpain is induced as a consequence of binding of adhesive ligand to the integrin, glycoprotein IIb-IIIa. J Cell Biol 120: 1501–1507.

    Article  CAS  PubMed  Google Scholar 

  • Gericke A, Munson M, Ross AH . (2006). Regulation of the PTEN phosphatase. Gene 374: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Glading A, Bodnar RJ, Reynolds IJ, Shiraha H, Satish L, Potter DA et al. (2004). Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol 24: 2499–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J . (2003). The calpain system. Physiol Rev 83: 731–801.

    Article  CAS  PubMed  Google Scholar 

  • Gregoriou M, Willis AC, Pearson MA, Crawford C . (1994). The calpain cleavage sites in the epidermal growth factor receptor kinase domain. Eur J Biochem 223: 455–464.

    Article  CAS  PubMed  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4: 988–1004.

    Article  CAS  PubMed  Google Scholar 

  • Ishizawar RC, Miyake T, Parsons SJ . (2007). c-Src modulates ErbB2 and ErbB3 heterocomplex formation and function. Oncogene 26: 3503–3510.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni S, Goll DE, Fox JE . (2002). Calpain cleaves RhoA generating a dominant-negative form that inhibits integrin-induced actin filament assembly and cell spreading. J Biol Chem 277: 24435–24441.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni S, Saido TC, Suzuki K, Fox JE . (1999). Calpain mediates integrin-induced signaling at a point upstream of Rho family members. J Biol Chem 274: 21265–21275.

    Article  CAS  PubMed  Google Scholar 

  • Lacroix M, Leclercq G . (2004). Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83: 249–289.

    Article  CAS  PubMed  Google Scholar 

  • Lawlor MA, Alessi DR . (2001). PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114: 2903–2910.

    CAS  PubMed  Google Scholar 

  • Libertini SJ, Tepper CG, Rodriguez V, Asmuth DM, Kung HJ, Mudryj M . (2007). Evidence for calpain-mediated androgen receptor cleavage as a mechanism for androgen independence. Cancer Res 67: 9001–9005.

    Article  CAS  PubMed  Google Scholar 

  • Mlynarczuk-Bialy I, Roeckmann H, Kuckelkorn U, Schmidt B, Umbreen S, Golab J et al. (2006). Combined effect of proteasome and calpain inhibition on cisplatin-resistant human melanoma cells. Cancer Res 66: 7598–7605.

    Article  CAS  PubMed  Google Scholar 

  • Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J . (2001). Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 61: 4744–4749.

    CAS  PubMed  Google Scholar 

  • Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA et al. (2004). PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6: 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Nahta R, Esteva FJ . (2004). in vitro effects of trastuzumab and vinorelbine in trastuzumab-resistant breast cancer cells. Cancer Chemother Pharmacol 53: 186–190.

    Article  CAS  PubMed  Google Scholar 

  • Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ . (2005). Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 65: 11118–11128.

    Article  CAS  PubMed  Google Scholar 

  • Perrin BJ, Amann KJ, Huttenlocher A . (2006). Proteolysis of cortactin by calpain regulates membrane protrusion during cell migration. Mol Biol Cell 17: 239–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I et al. (2005). Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353: 1659–1672.

    Article  CAS  PubMed  Google Scholar 

  • Raynaud F, Bonnal C, Fernandez E, Bremaud L, Cerutti M, Lebart MC et al. (2003). The calpain 1-alpha-actinin interaction. Resting complex between the calcium-dependent protease and its target in cytoskeleton. Eur J Biochem 270: 4662–4670.

    Article  CAS  PubMed  Google Scholar 

  • Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA et al. (2007). Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13: 4909–4919.

    Article  CAS  PubMed  Google Scholar 

  • Shattuck DL, Miller JK, Carraway 3rd KL, Sweeney C . (2008). Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res 68: 1471–1477.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792.

    Article  CAS  PubMed  Google Scholar 

  • Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M et al. (2008). An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68: 6084–6091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Li P, Klos KS, Lu J, Lan KH, Nagata Y et al. (2005). ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis. Cancer Res 65: 1858–1867.

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Wu C, De Veyra T, Greer PA . (2006). Ubiquitous calpains promote both apoptosis and survival signals in response to different cell death stimuli. J Biol Chem 281: 17689–17698.

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Pinzi V, Bourhis J, Deutsch E . (2007). Mechanisms of disease: signaling of the insulin-like growth factor 1 receptor pathway--therapeutic perspectives in cancer. Nat Clin Pract Oncol 4: 591–602.

    Article  CAS  PubMed  Google Scholar 

  • Troussard AA, McDonald PC, Wederell ED, Mawji NM, Filipenko NR, Gelmon KA et al. (2006). Preferential dependence of breast cancer cells versus normal cells on integrin-linked kinase for protein kinase B/Akt activation and cell survival. Cancer Res 66: 393–403.

    Article  CAS  PubMed  Google Scholar 

  • Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L et al. (2002). Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20: 719–726.

    Article  CAS  PubMed  Google Scholar 

  • Wang SE, Shin I, Wu FY, Friedman DB, Arteaga CL . (2006). HER2/Neu (ErbB2) signaling to Rac1-Pak1 is temporally and spatially modulated by transforming growth factor beta. Cancer Res 66: 9591–9600.

    Article  CAS  PubMed  Google Scholar 

  • Wang SE, Xiang B, Zent R, Quaranta V, Pozzi A, Arteaga CL . (2009). Transforming growth factor beta induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton. Cancer Res 69: 475–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL . (2002). Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62: 4132–4141.

    CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Zhang L, Huang X, Davis JJ, Jacob DA, Teraishi F et al. (2004). Overcoming acquired resistance to TRAIL by chemotherapeutic agents and calpain inhibitor I through distinct mechanisms. Mol Ther 9: 666–673.

    Article  CAS  PubMed  Google Scholar 

  • Zito CI, Riches D, Kolmakova J, Simons J, Egholm M, Stern DF . (2008). Direct resequencing of the complete ERBB2 coding sequence reveals an absence of activating mutations in ERBB2 amplified breast cancer. Genes Chromosomes Cancer 47: 633–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zutter MM . (2007). Integrin-mediated adhesion: tipping the balance between chemosensitivity and chemoresistance. Adv Exp Med Biol 608: 87–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

First author thanks Dr James H Finke, Department of Immunology Cleveland Clinic, for critical review of data and paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, S., Reddy, K., Esteva, F. et al. Calpain regulates sensitivity to trastuzumab and survival in HER2-positive breast cancer. Oncogene 29, 1339–1350 (2010). https://doi.org/10.1038/onc.2009.422

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.422

Keywords

This article is cited by

Search

Quick links