Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Overexpression of macrophage inhibitory cytokine-1 induces metastasis of human prostate cancer cells through the FAK–RhoA signaling pathway

Abstract

An elevated level of macrophage inhibitory cytokine-1 (MIC-1) is reported in the sera of patients with metastatic prostate cancer compared with that of benign diseases and healthy adults. We investigated the mechanistic role of MIC-1 overexpression in the metastasis of prostate cancer cells. Our study showed a progressive increase in secretory MIC-1 production correlated with the increase in the metastatic potential of PC-3 and LNPCa prostate cancer metastatic variants. Further, the in vitro studies using ‘loss-’ and ‘gain’-of-function approaches showed that ectopic overexpression of MIC-1 (PC-3-MIC-1) and forced downregulation of MIC-1(PC-3M-siMIC-1) enhanced and reduced the motility and invasiveness of these cells, respectively. Supporting our in vitro observations, all the mice orthotopically implanted with PC-3-MIC-1 cells developed metastasis compared with none in the PC-3-vector group. Our results showed that MIC-1 overexpression was associated with apparent changes in actin organization. In addition, an enhanced phosphorylation of focal adhesion kinase (FAK) and guanosine-5′-triphosphate (GTP)-bound RhoA was also seen; however, no significant change was observed in total FAK and RhoA levels in the PC-3-MIC-1 cells. Altogether, our findings show that MIC-1 has a role in prostate cancer metastasis, in part, by promoting the motility of these cells. Activation of the FAK–RhoA signaling pathway is involved in MIC-1-mediated actin reorganization, and thus, leads to an increase in the motility of prostate cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Baek SJ, Kim KS, Nixon JB, Wilson LC, Eling TE . (2001). Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol Pharmacol 59: 901–908.

    Article  CAS  PubMed  Google Scholar 

  • Banyard J, Zetter BR . (1998). The role of cell motility in prostate cancer. Cancer Metastasis Rev 17: 449–458.

    Article  CAS  PubMed  Google Scholar 

  • Barrack ER . (1997). TGF beta in prostate cancer: a growth inhibitor that can enhance tumorigenicity. Prostate 31: 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Bauskin AR, Brown DA, Junankar S, Rasiah KK, Eggleton S, Hunter M et al. (2005). The propeptide mediates formation of stromal stores of PROMIC-1: role in determining prostate cancer outcome. Cancer Res 65: 2330–2336.

    Article  CAS  PubMed  Google Scholar 

  • Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY et al. (1997). MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci USA 94: 11514–11519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottner M, Suter-Crazzolara C, Schober A, Unsicker K . (1999). Expression of a novel member of the TGF-beta superfamily, growth/differentiation factor-15/macrophage-inhibiting cytokine-1 (GDF-15/MIC-1) in adult rat tissues. Cell Tissue Res 297: 103–110.

    Article  CAS  PubMed  Google Scholar 

  • Chen SJ, Karan D, Johansson SL, Lin FF, Zeckser J, Singh AP et al. (2007). Prostate-derived factor as a paracrine and autocrine factor for the proliferation of androgen receptor-positive human prostate cancer cells. Prostate 67: 557–571.

    Article  CAS  PubMed  Google Scholar 

  • Chikumi H, Fukuhara S, Gutkind JS . (2002). Regulation of G protein-linked guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation: evidence of a role for focal adhesion kinase. J Biol Chem 277: 12463–12473.

    Article  CAS  PubMed  Google Scholar 

  • D'Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA et al. (1998). Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280: 969–974.

    Article  CAS  PubMed  Google Scholar 

  • Fairlie WD, Moore AG, Bauskin AR, Russell PK, Zhang HP, Breit SN . (1999). MIC-1 is a novel TGF-beta superfamily cytokine associated with macrophage activation. J Leukoc Biol 65: 2–5.

    Article  CAS  PubMed  Google Scholar 

  • Hodge JC, Bub J, Kaul S, Kajdacsy-Balla A, Lindholm PF . (2003). Requirement of RhoA activity for increased nuclear factor kappaB activity and PC-3 human prostate cancer cell invasion. Cancer Res 63: 1359–1364.

    CAS  PubMed  Google Scholar 

  • Hromas R, Hufford M, Sutton J, Xu D, Li Y, Lu L . (1997). PLAB, a novel placental bone morphogenetic protein. Biochim Biophys Acta 1354: 40–44.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. (2008). Cancer statistics, 2008. CA Cancer J Clin 58: 71–96.

    Article  PubMed  Google Scholar 

  • Johnen H, Lin S, Kuffner T, Brown DA, Tsai VW, Bauskin AR et al. (2007). Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat Med 13: 1333–1340.

    Article  CAS  PubMed  Google Scholar 

  • Karan D, Chen SJ, Johansson SL, Singh AP, Paralkar VM, Lin MF et al. (2003). Dysregulated expression of MIC-1/PDF in human prostate tumor cells. Biochem Biophys Res Commun 305: 598–604.

    Article  CAS  PubMed  Google Scholar 

  • Karan D, Holzbeierlein J, Thrasher JB . (2009). Macrophage inhibitory cytokine-1: possible bridge molecule of inflammation and prostate cancer. Cancer Res 69: 2–5.

    Article  CAS  PubMed  Google Scholar 

  • Karan D, Kelly DL, Rizzino A, Lin MF, Batra SK . (2002). Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cells. Carcinogenesis 23: 967–975.

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski JM, Fidler IJ, Campbell D, Xu ZL, Kaighn ME, Hart IR . (1984). Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 44: 3522–3529.

    CAS  PubMed  Google Scholar 

  • Lambert JR, Kelly JA, Shim M, Huffer WE, Nordeen SK, Baek SJ et al. (2006). Prostate derived factor in human prostate cancer cells: gene induction by vitamin D via a p53-dependent mechanism and inhibition of prostate cancer cell growth. J Cell Physiol 208: 566–574.

    Article  CAS  PubMed  Google Scholar 

  • Lawton LN, Bonaldo MF, Jelenc PC, Qiu L, Baumes SA, Marcelino RA et al. (1997). Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta. Gene 203: 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Yang Y, Lee SJ, Kim KY, Koo TH, Shin SM et al. (2003). Macrophage inhibitory cytokine-1 induces the invasiveness of gastric cancer cells by up-regulating the urokinase-type plasminogen activator system. Cancer Res 63: 4648–4655.

    CAS  PubMed  Google Scholar 

  • Liu T, Bauskin AR, Zaunders J, Brown DA, Pankhurst S, Russell PJ et al. (2003). Macrophage inhibitory cytokine 1 reduces cell adhesion and induces apoptosis in prostate cancer cells. Cancer Res 63: 5034–5040.

    CAS  PubMed  Google Scholar 

  • McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC . (2005). The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat Rev Cancer 5: 505–515.

    Article  CAS  PubMed  Google Scholar 

  • Padua D, Massague J . (2009). Roles of TGFbeta in metastasis. Cell Res 19: 89–102.

    Article  CAS  PubMed  Google Scholar 

  • Paralkar VM, Vail AL, Grasser WA, Brown TA, Xu H, Vukicevic S et al. (1998). Cloning and characterization of a novel member of the transforming growth factor-beta/bone morphogenetic protein family. J Biol Chem 273: 13760–13767.

    Article  CAS  PubMed  Google Scholar 

  • Patrikainen L, Porvari K, Kurkela R, Hirvikoski P, Soini Y, Vihko P . (2007). Expression profiling of PC-3 cell line variants and comparison of MIC-1 transcript levels in benign and malignant prostate. Eur J Clin Invest 37: 126–133.

    Article  CAS  PubMed  Google Scholar 

  • Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ et al. (1996). Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res 2: 1627–1636.

    CAS  PubMed  Google Scholar 

  • Robinson VL, Kauffman EC, Sokoloff MH, Rinker-Schaeffer CW . (2004). The basic biology of metastasis. Cancer Treat Res 118: 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Schlaepfer DD, Mitra SK, Ilic D . (2004). Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 1692: 77–102.

    Article  CAS  PubMed  Google Scholar 

  • Selander KS, Brown DA, Sequeiros GB, Hunter M, Desmond R, Parpala T et al. (2007). Serum macrophage inhibitory cytokine-1 concentrations correlate with the presence of prostate cancer bone metastases. Cancer Epidemiol Biomarkers Prev 16: 532–537.

    Article  CAS  PubMed  Google Scholar 

  • Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH et al. (2000). FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2: 249–256.

    Article  CAS  PubMed  Google Scholar 

  • Sporn MB . (1996). The war on cancer. Lancet 347: 1377–1381.

    Article  CAS  PubMed  Google Scholar 

  • Wakchoure S, Swain TM, Hentunen TA, Bauskin AR, Brown DA, Breit SN et al. (2009). Expression of macrophage inhibitory cytokine-1 in prostate cancer bone metastases induces osteoclast activation and weight loss. Prostate 69: 652–661.

    Article  CAS  PubMed  Google Scholar 

  • Welsh JB, Sapinoso LM, Kern SG, Brown DA, Liu T, Bauskin AR et al. (2003). Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci USA 100: 3410–3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Lin H, Nie Z, Wu J, Canete-Soler R, Schlaepfer WW et al. (2003). Direct interaction of focal adhesion kinase with p190RhoGEF. J Biol Chem 278: 24865–24873.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported, in part, by grants from the Department of Defense (PC040502 and PC074289). We thank Dr Ajay P Singh for reading the paper and for his valuable suggestions. We also thank Erik Moore for his technical assistance and Kristi LW Berger for editing the paper. We also acknowledge the NCI Cancer Center Support Grant (P30 CA36727) to UNMC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Batra.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senapati, S., Rachagani, S., Chaudhary, K. et al. Overexpression of macrophage inhibitory cytokine-1 induces metastasis of human prostate cancer cells through the FAK–RhoA signaling pathway. Oncogene 29, 1293–1302 (2010). https://doi.org/10.1038/onc.2009.420

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.420

Keywords

This article is cited by

Search

Quick links