Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors

Abstract

Downregulation of miR-145 in a variety of cancers suggests a possible tumor suppressor function for this microRNA. Here, we show that miR-145 expression is reduced in bladder cancer and urothelial carcinoma in situ, compared with normal urothelium, using transcription profiling and in situ hybridization. Ectopic expression of miR-145 induced extensive apoptosis in urothelial carcinoma cell lines (T24 and SW780) as characterized by caspase activation, nuclear condensation and fragmentation, cellular shrinkage, and detachment. However, cell death also proceeded upon caspase inhibition by the pharmacological inhibitor zVAD-fmk and ectopic expression of anti-apoptotic Bcl-2, indicating the activation of an alternative caspase-independent death pathway. Microarray analysis of transcript levels in T24 cells, before the onset of cell death, showed destabilization of mRNAs enriched for miR-145 7mer target sites. Among these, direct targeting of CBFB, PPP3CA, and CLINT1 was confirmed by a luciferase reporter assay. Notably, a 22-gene signature targeted on enforced miR-145 expression in T24 cells was significantly (P<0.00003) upregulated in 55 Ta bladder tumors with concomitant reduction of miR-145. Our data indicate that reduction in miR-145 expression may provide bladder cancer cells with a selective advantage by inhibition of cell death otherwise triggered in malignant cells.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  • Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . (2008). The impact of microRNAs on protein output. Nature 455: 64–71.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857–866.

    CAS  Article  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460: 705–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dyrskjot L, Ostenfeld MS, Bramsen JB, Silahtaroglu AN, Lamy P, Ramanathan R et al. (2009). Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res 69: 4851–4860.

    CAS  Article  PubMed  Google Scholar 

  • Dyrskjot L, Zieger K, Kruhoffer M, Thykjaer T, Jensen JL, Primdahl H et al. (2005). A molecular signature in superficial bladder carcinoma predicts clinical outcome. Clin Cancer Res 11: 4029–4036.

    CAS  Article  PubMed  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    CAS  Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  Article  PubMed  Google Scholar 

  • Hart SM, Foroni L . (2002). Core binding factor genes and human leukemia. Haematologica 87: 1307–1323.

    CAS  PubMed  Google Scholar 

  • Horrigan SK, Westbrook CA, Kim AH, Banerjee M, Stock W, Larson RA . (1996). Polymerase chain reaction-based diagnosis of del (5q) in acute myeloid leukemia and myelodysplastic syndrome identifies a minimal deletion interval. Blood 88: 2665–2670.

    CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    CAS  Article  PubMed  Google Scholar 

  • Kagoshima H, Nimmo R, Saad N, Tanaka J, Miwa Y, Mitani S et al. (2007). The C. elegans CBFbeta homologue BRO-1 interacts with the Runx factor, RNT-1, to promote stem cell proliferation and self-renewal. Development 134: 3905–3915.

    CAS  Article  PubMed  Google Scholar 

  • Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le Sage C et al. (2007). RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131: 1273–1286.

    CAS  Article  PubMed  Google Scholar 

  • Kim M, Park SY, Pai HS, Kim TH, Billiar TR, Seol DW . (2004). Hypoxia inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by blocking Bax translocation. Cancer Res 64: 4078–4081.

    CAS  Article  PubMed  Google Scholar 

  • Kim R, Emi M, Tanabe K, Murakami S, Uchida Y, Arihiro K . (2006). Regulation and interplay of apoptotic and non-apoptotic cell death. J Pathol 208: 319–326.

    CAS  Article  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH et al. (2008). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16: 3–11.

    Article  PubMed  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419.

    CAS  PubMed  Google Scholar 

  • Levine B, Yuan J . (2005). Autophagy in cell death: an innocent convict? J Clin Invest 115: 2679–2688.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Litynska A, Przybylo M, Ksiazek D, Laidler P . (2000). Differences of alpha3beta1 integrin glycans from different human bladder cell lines. Acta Biochim Pol 47: 427–434.

    CAS  PubMed  Google Scholar 

  • Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ . (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1: 882–891.

    CAS  PubMed  Google Scholar 

  • Mitra AP, Birkhahn M, Cote RJ . (2007). p53 and retinoblastoma pathways in bladder cancer. World J Urol 25: 563–571.

    CAS  Article  PubMed  Google Scholar 

  • Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K et al. (2006). Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 3: 317–324.

    CAS  PubMed  Google Scholar 

  • Nuovo GJ . (2008). In situ detection of precursor and mature microRNAs in paraffin embedded, formalin fixed tissues and cell preparations. Methods 44: 39–46.

    CAS  Article  PubMed  Google Scholar 

  • Orom UA, Nielsen FC, Lund AH . (2008). MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30: 460–471.

    Article  PubMed  Google Scholar 

  • Ostenfeld MS, Fehrenbacher N, Hoyer-Hansen M, Thomsen C, Farkas T, Jaattela M . (2005). Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res 65: 8975–8983.

    CAS  Article  PubMed  Google Scholar 

  • Ow YL, Green DR, Hao Z, Mak TW . (2008). Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 9: 532–542.

    CAS  Article  PubMed  Google Scholar 

  • Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T . (2007). MicroRNA expression profiling in prostate cancer. Cancer Res 67: 6130–6135.

    CAS  Article  PubMed  Google Scholar 

  • Rajewsky N . (2006). microRNA target predictions in animals. Nat Genet 38 (Suppl): S8–S13.

    CAS  Article  PubMed  Google Scholar 

  • Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 106: 3207–3212.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjot L et al. (2008). Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res 68: 6416–6424.

    CAS  Article  PubMed  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58–63.

    CAS  Article  PubMed  Google Scholar 

  • Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G et al. (2007). Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67: 11612–11620.

    CAS  Article  PubMed  Google Scholar 

  • Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R . (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 282: 32582–32590.

    CAS  Article  PubMed  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451: 147–152.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Thorsen K, Sorensen KD, Brems-Eskildsen AS, Modin C, Gaustadnes M, Hein AM et al. (2008). Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol Cell Proteomics 7: 1214–1224.

    CAS  Article  PubMed  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA . (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science 318: 1931–1934.

    CAS  Article  PubMed  Google Scholar 

  • Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C et al. (2008). Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS ONE 3: e2557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189–198.

    CAS  Article  PubMed  Google Scholar 

  • Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J et al. (2008). MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68: 425–433.

    CAS  Article  PubMed  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S et al. (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304: 1500–1502.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gitte Høj, Pamela Celis, Hanne Steen, Inge-Lis Thorsen, Gitte Stougård, and Conni Sørensen for technical assistance. We are grateful to M Jäättelä for providing the pCEP4 Bcl-2 vector construct and to Thomas B Hansen for methylation analysis software. We thank the staff at the Departments of Urology, Clinical Biochemistry, and Pathology at Aarhus University Hospital. This work was supported by the Ministry of Technology and Science, The John and Birthe Meyer Foundation, the Lundbeck Foundation, and the Danish Cancer Society, and the European Community's Seventh framework program (FP7/2007–2013) under grant agreement no 201663.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T F Ørntoft.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ostenfeld, M., Bramsen, J., Lamy, P. et al. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene 29, 1073–1084 (2010). https://doi.org/10.1038/onc.2009.395

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.395

Keywords

  • miRNA
  • bladder cancer
  • cell death
  • caspases
  • microarray

Further reading

Search

Quick links