Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions

Abstract

Runx2, a bone-specific transcriptional regulator, is abnormally expressed in highly metastatic prostate cancer cells. Here, we identified the functional activities of Runx2 in facilitating tumor growth and osteolysis. Our studies show that negligible Runx2 is found in normal prostate epithelial and non-metastatic LNCaP prostate cancer cells. In the intra-tibial metastasis model, high Runx2 levels are associated with development of large tumors, increased expression of metastasis-related genes (MMP9, MMP13, VEGF, Osteopontin) and secreted bone-resorbing factors (PTHrP, IL8) promoting osteolytic disease. Runx2 siRNA treatment of PC3 cells decreased cell migration and invasion through Matrigel in vitro, and in vivo shRunx2 expression in PC3 cells blocked their ability to survive in the bone microenvironment. Mechanisms of Runx2 function were identified in co-culture studies showing that PC3 cells promote osteoclastogenesis and inhibit osteoblast activity. The clinical significance of these findings is supported by human tissue microarray studies of prostate tumors at stages of cancer progression, in which Runx2 is expressed in both adenocarcinomas and metastatic tumors. Together these findings indicate that Runx2 is a key regulator of events associated with prostate cancer metastatic bone disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Altieri DC . (2008). New wirings in the survivin networks. Oncogene 27: 6276–6284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki S, Omori Y, Lyn D, Singh RK, Meinbach DM, Sandman Y et al. (2007). Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res 67: 6854–6862.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong AP, Miller RE, Jones JC, Zhang J, Keller ET, Dougall WC . (2008). RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate 68: 92–104.

    Article  CAS  PubMed  Google Scholar 

  • Barnes GL, Hebert KE, Kamal M, Javed A, Einhorn TA, Lian JB et al. (2004). Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases associated osteolytic disease. Cancer Res 64: 4506–4513.

    Article  CAS  PubMed  Google Scholar 

  • Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ et al. (2003). Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 63: 2631–2637.

    CAS  PubMed  Google Scholar 

  • Bendre MS, Margulies AG, Walser B, Akel NS, Bhattacharrya S, Skinner RA et al. (2005). Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res 65: 11001–11009.

    Article  CAS  PubMed  Google Scholar 

  • Blyth K, Cameron ER, Neil JC . (2005). The runx genes: gain or loss of function in cancer. Nat Rev Cancer 5: 376–387.

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Corey E, Lee ZD, True LD, Yun TJ, Tondravi M et al. (2001). Osteoprotegerin and rank ligand expression in prostate cancer. Urology 57: 611–616.

    Article  CAS  PubMed  Google Scholar 

  • Clines GA, Mohammad KS, Bao Y, Stephens OW, Suva LJ, Shaughnessy Jr JD et al. (2007). Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol Endocrinol 21: 486–498.

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Kitagawa Y, Zhang J, Yao Z, Mizokami A, Cheng S et al. (2004). Vascular endothelial growth factor contributes to the prostate cancer-induced osteoblast differentiation mediated by bone morphogenetic protein. Cancer Res 64: 994–999.

    Article  CAS  PubMed  Google Scholar 

  • Deryugina EI, Quigley JP . (2006). Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25: 9–34.

    Article  CAS  PubMed  Google Scholar 

  • Edwards CM, Zhuang J, Mundy GR . (2008). The pathogenesis of the bone disease of multiple myeloma. Bone 42: 1007–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egeblad M, Werb Z . (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161–174.

    Article  CAS  PubMed  Google Scholar 

  • Fornaro M, Plescia J, Chheang S, Tallini G, Zhu YM, King M et al. (2003). Fibronectin protects prostate cancer cells from tumor necrosis factor-alpha-induced apoptosis via the AKT/survivin pathway. J Biol Chem 278: 50402–50411.

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Kitagawa Y, Shen R, Shah R, Mehra R, Rhodes D et al. (2006). Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate 66: 248–256.

    Article  CAS  PubMed  Google Scholar 

  • Glinsky GV, Glinskii AB, Berezovskaya O, Smith BA, Jiang P, Li XM et al. (2006). Dual-color-coded imaging of viable circulating prostate carcinoma cells reveals genetic exchange between tumor cells in vivo, contributing to highly metastatic phenotypes. Cell Cycle 5: 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS et al. (2006). Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 12: 6213s–6216s.

    Article  CAS  PubMed  Google Scholar 

  • Hall CL, Kang S, MacDougald OA, Keller ET . (2006). Role of Wnts in prostate cancer bone metastases. J Cell Biochem 97: 661–672.

    Article  CAS  PubMed  Google Scholar 

  • Hassan MQ, Javed A, Morasso MI, Karlin J, Montecino M, van Wijnen AJ et al. (2004). Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol Cell Biol 24: 9248–9261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WC, Xie Z, Konaka H, Sodek J, Zhau HE, Chung LW . (2005). Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway. Cancer Res 65: 2303–2313.

    Article  CAS  PubMed  Google Scholar 

  • Inman CK, Shore P . (2003). The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem 278: 48684–48689.

    Article  CAS  PubMed  Google Scholar 

  • Javed A, Barnes GL, Pratap J, Antkowiak T, Gerstenfeld LC, van Wijnen AJ et al. (2005). Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc Natl Acad Sci USA 102: 1454–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller ET, Brown J . (2004). Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem 91: 718–729.

    Article  CAS  PubMed  Google Scholar 

  • Kingsley LA, Fournier PG, Chirgwin JM, Guise TA . (2007). Molecular biology of bone metastasis. Mol Cancer Ther 6: 2609–2617.

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Mathew P, Yang J, Starbuck MW, Zurita AJ, Liu J et al. (2008a). Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J Clin Invest 118: 2697–2710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZG, Yang J, Vazquez ES, Rose D, Vakar-Lopez F, Mathew P et al. (2008b). Low-density lipoprotein receptor-related protein 5 (LRP5) mediates the prostate cancer-induced formation of new bone. Oncogene 27: 596–603.

    Article  CAS  PubMed  Google Scholar 

  • Liao J, McCauley LK . (2006). Skeletal metastasis: established and emerging roles of parathyroid hormone related protein (PTHrP). Cancer Metastasis Rev 25: 559–571.

    Article  CAS  PubMed  Google Scholar 

  • Morgia G, Falsaperla M, Malaponte G, Madonia M, Indelicato M, Travali S et al. (2005). Matrix metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, MMP-9) markers of prostate cancer. Urol Res 33: 44–50.

    Article  CAS  PubMed  Google Scholar 

  • Mundy GR . (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2: 584–593.

    Article  CAS  PubMed  Google Scholar 

  • Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA et al. (2003). Cell growth regulatory role of Runx2 during proliferative expansion of pre-osteoblasts. Cancer Res 63: 5357–5362.

    CAS  PubMed  Google Scholar 

  • Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS et al. (2005). The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 25: 8581–8591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL et al. (2006). Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev 25: 589–600.

    Article  CAS  PubMed  Google Scholar 

  • Pratap J, Wixted JJ, Gaur T, Zaidi SK, Dobson J, Gokul KD et al. (2008). Runx2 transcriptional activation of Indian hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Res 68: 7795–7802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roca H, Varsos Z, Pienta KJ . (2008). CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 283: 25057–25073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roudier MP, Morrissey C, True LD, Higano CS, Vessella RL, Ott SM . (2008). Histopathological assessment of prostate cancer bone osteoblastic metastases. J Urol 180: 1154–1160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubin MA, Putzi M, Mucci N, Smith DC, Wojno K, Korenchuk S et al. (2000). Rapid (‘warm’) autopsy study for procurement of metastatic prostate cancer. Clin Cancer Res 6: 1038–1045.

    CAS  PubMed  Google Scholar 

  • Selvamurugan N, Jefcoat SC, Kwok S, Kowalewski R, Tamasi JA, Partridge NC . (2006). Overexpression of Runx2 directed by the matrix metalloproteinase-13 promoter containing the AP-1 and Runx/RD/Cbfa sites alters bone remodeling in vivo. J Cell Biochem 99: 545–557.

    Article  CAS  PubMed  Google Scholar 

  • Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA . (2005). Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 115: 1210–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL et al. (1994). Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 54: 2577–2581.

    CAS  PubMed  Google Scholar 

  • Yang Q, McHugh KP, Patntirapong S, Gu X, Wunderlich L, Hauschka PV . (2008). VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta(3)-integrin. Matrix Biol 27: 589–599.

    Article  PubMed  Google Scholar 

  • Young DW, Hassan MQ, Pratap J, Galindo M, Zaidi SK, Lee SH et al. (2007). Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature 445: 442–446.

    Article  CAS  PubMed  Google Scholar 

  • Zaidi SK, Pande S, Pratap J, Gaur T, Grigoriu S, Ali SA et al. (2007a). Runx2 deficiency and defective subnuclear targeting bypass senescence to promote immortalization and tumorigenic potential. Proc Natl Acad Sci USA 104: 19861–19866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi SK, Young DW, Javed A, Pratap J, Montecino M, van WA et al. (2007b). Nuclear microenvironments in biological control and cancer. Nat Rev Cancer 7: 454–463.

    Article  CAS  PubMed  Google Scholar 

  • Zayzafoon M, Abdulkadir SA, McDonald JM . (2004). Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. J Biol Chem 279: 3662–3670.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the following for providing us with prostate cancer cell lines: RWPE, George Barnes (Boston University School of Medicine); PC3-H and C4-2B, Leland Chung (Emory University School of Medicine). This work was supported by NIH Grants PO1CA082834 (GSS); RO1CA89720 (LRL); RO1CA090917 (DCA); P01CA093900 and SPORE P50CA69568 (EK); R01CA069158 (TAG); and Our Danny Cancer Fund post-doctoral fellowship, ODCF 114357 (JA). The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J B Lian.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akech, J., Wixted, J., Bedard, K. et al. Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 29, 811–821 (2010). https://doi.org/10.1038/onc.2009.389

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.389

Keywords

This article is cited by

Search

Quick links