Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to be selectively pro-apoptotic in cancer cells, with minimal toxicity to normal tissues. Although this feature makes TRAIL a promising anticancer agent, not all cancer cell types are sensitive to TRAIL-induced apoptosis despite abundant expression of TRAIL receptors. Thus, combinatorial treatments to sensitize tumor cells to TRAIL-induced apoptosis have been in the focus of extensive research. Dietary lignans have shown cancer preventive and antitumorigenic activity, but the mechanisms behind these effects are poorly known. Here we observed that of the three tested lignan molecules, matairesinol (MAT) was the most effective as a death receptor-sensitizing agent. MAT sensitized the androgen-dependent LNCaP cells to TRAIL-induced apoptosis both in the presence and absence of androgens. Treatment with MAT markedly decreased Akt activity, which has been implicated as a key signaling mechanism in the TRAIL resistance of LNCaP prostate cancer cells. The involvement of the pathway in the MAT-mediated sensitization was shown in rescue experiments using ectopic expression of constitutively active Akt. Owing to the high activity of phosphatidylinositol 3-kinase/Akt signaling in cancer, targeting this survival pathway with MAT could markedly benefit TRAIL-based tumor therapies, including those aimed at prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adlercreutz H . (2007). Lignans and human health. Crit Rev Clin Lab Sci 44: 483–525.

    Article  CAS  PubMed  Google Scholar 

  • Adlercreutz H, Bannwart C, Wahala K, Makela T, Brunow G, Hase T et al. (1993). Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J Steroid Biochem Mol Biol 44: 147–153.

    Article  CAS  PubMed  Google Scholar 

  • Aslan JE, You H, Williamson DM, Endig J, Youker RT, Thomas L et al. (2009). Akt and 14-3-3 control a PACS-2 homeostatic switch that integrates membrane traffic with TRAIL-induced apoptosis. Mol Cell 34: 497–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelson M, Sjovall J, Gustafsson BE, Setchell KD . (1982). Origin of lignans in mammals and identification of a precursor from plants. Nature 298: 659–660.

    Article  CAS  PubMed  Google Scholar 

  • Bucur O, Ray S, Bucur MC, Almasan A . (2006). APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in prostate cancer therapy. Front Biosci 11: 1549–1568.

    Article  CAS  PubMed  Google Scholar 

  • Bylund A, Saarinen N, Zhang JX, Bergh A, Widmark A, Johansson A et al. (2005). Anticancer effects of a plant lignan 7-hydroxymatairesinol on a prostate cancer model in vivo. Exp Biol Med (Maywood) 230: 217–223.

    Article  CAS  Google Scholar 

  • Chen LH, Fang J, Li H, Demark-Wahnefried W, Lin X . (2007). Enterolactone induces apoptosis in human prostate carcinoma LNCaP cells via a mitochondrial-mediated, caspase-dependent pathway. MolCancerTher 6: 2581–2590.

    CAS  Google Scholar 

  • Chen LH, Fang J, Sun Z, Li H, Wu Y, Demark-Wahnefried W et al. (2009). Enterolactone inhibits insulin-like growth factor-1 receptor signaling in human prostatic carcinoma PC-3 cells. J Nutr 139: 653–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Thakkar H, Tyan F, Gim S, Robinson H, Lee C et al. (2001). Constitutively active akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 20: 6073–6083.

    Article  CAS  PubMed  Google Scholar 

  • Danial NN, Korsmeyer SJ . (2004). Cell death: critical control points. Cell 116: 205–219.

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Debatin KM . (2004). Signaling through death receptors in cancer therapy. Curr Opin Pharmacol 4: 327–332.

    Article  CAS  PubMed  Google Scholar 

  • Hausott B, Greger H, Marian B . (2003). Naturally occurring lignans efficiently induce apoptosis in colorectal tumor cells. J Cancer Res Clin Oncol 129: 569–576.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Zegarra-Moro OL, Benson D, Tindall DJ . (2004). Androgens repress bcl-2 expression via activation of the retinoblastoma (RB) protein in prostate cancer cells. Oncogene 23: 2161–2176.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Thun MJ, Ries LA, Howe HL, Weir HK, Center MM et al. (2008). Annual report to the nation on the status of cancer, 1975–2005, featuring trends in lung cancer, tobacco use, and tobacco control. J Natl Cancer Inst 100: 1672–1694.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Z, McDonald ER, Dicker DT, El-Deiry WS . (2004). Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279: 35829–35839.

    Article  CAS  PubMed  Google Scholar 

  • Kim KM, Song JJ, An JY, Kwon YT, Lee YJ . (2005). Pretreatment of acetylsalicylic acid promotes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by down-regulating BCL-2 gene expression. J Biol Chem 280: 41047–41056.

    Article  CAS  PubMed  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH et al. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14: 5579–5588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitts DD, Yuan YV, Wijewickreme AN, Thompson LU . (1999). Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Mol Cell Biochem 202: 91–100.

    Article  CAS  PubMed  Google Scholar 

  • Koschny R, Walczak H, Ganten TM . (2007). The promise of TRAIL—potential and risks of a novel anticancer therapy. J Mol Med 85: 923–935.

    Article  CAS  PubMed  Google Scholar 

  • Li D, Yee JA, Thompson LU, Yan L . (1999). Dietary supplementation with secoisolariciresinol diglycoside (SDG) reduces experimental metastasis of melanoma cells in mice. Cancer Lett 142: 91–96.

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Switzer BR, Demark-Wahnefried W . (2001). Effect of mammalian lignans on the growth of prostate cancer cell lines. Anticancer Res 21: 3995–3999.

    CAS  PubMed  Google Scholar 

  • Mahalingam D, Szegezdi E, Keane M, Jong SD, Samali A . (2008). TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev 35: 280–288.

    Article  PubMed  Google Scholar 

  • McCann MJ, Gill CI, Linton T, Berrar D, McGlynn H, Rowland IR . (2008). Enterolactone restricts the proliferation of the LNCaP human prostate cancer cell line in vitro. Mol Nutr Food Res 52: 567–580.

    Article  CAS  PubMed  Google Scholar 

  • McCann MJ, Gill CI, McGlynn H, Rowland IR . (2005). Role of mammalian lignans in the prevention and treatment of prostate cancer. Nutr Cancer 52: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J et al. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Cell 85: 817–827.

    Article  CAS  PubMed  Google Scholar 

  • Nesterov A, Lu X, Johnson M, Miller GJ, Ivashchenko Y, Kraft AS . (2001). Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. J Biol Chem 276: 10767–10774.

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y et al. (1993). Lethal effect of the anti-fas antibody in mice. Nature 364: 806–809.

    Article  CAS  PubMed  Google Scholar 

  • Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM . (1997). An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277: 815–818.

    Article  CAS  PubMed  Google Scholar 

  • Raja SM, Chen S, Yue P, Acker TM, Lefkove B, Arbiser JL et al. (2008). The natural product honokiol preferentially inhibits cellular FLICE-inhibitory protein and augments death receptor-induced apoptosis. Mol Cancer Ther 7: 2212–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Bucur O, Almasan A . (2005). Sensitization of prostate carcinoma cells to Apo2 L/TRAIL by a bcl-2 family protein inhibitor. Apoptosis 10: 1411–1418.

    Article  CAS  PubMed  Google Scholar 

  • Rokhlin OW, Taghiyev AF, Guseva NV, Glover RA, Chumakov PM, Kravchenko JE et al. (2005). Androgen regulates apoptosis induced by TNFR family ligands via multiple signaling pathways in LNCaP. Oncogene 24: 6773–6784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rokhlin OW, Taghiyev AF, Guseva NV, Glover RA, Syrbu SI, Cohen MB . (2002). TRAIL-DISC formation is androgen-dependent in the human prostatic carcinoma cell line LNCaP. Cancer Biol Ther 1: 631–637.

    Article  CAS  PubMed  Google Scholar 

  • Saarinen NM, Warri A, Dings RP, Airio M, Smeds AI, Makela S. . (2008). Dietary lariciresinol attenuates mammary tumor growth and reduces blood vessel density in human MCF-7 breast cancer xenografts and carcinogen-induced mammary tumors in rats. Int J Cancer 123: 1196–1204.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer U, Voloshanenko O, Willen D, Walczak H . (2007). TRAIL: A multifunctional cytokine. Front Biosci 12: 3813–3824.

    Article  CAS  PubMed  Google Scholar 

  • Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D et al. (1997). Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277: 818–821.

    Article  CAS  PubMed  Google Scholar 

  • Sprick MR, Walczak H . (2004). The interplay between the bcl-2 family and death receptor-mediated apoptosis. Biochim Biophys Acta 1644: 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Thakkar H, Chen X, Tyan F, Gim S, Robinson H, Lee C et al. (2001). Pro-survival function of Akt/protein kinase B in prostate cancer cells. relationship with TRAIL resistance. J Biol Chem 276: 38361–38369.

    Article  CAS  PubMed  Google Scholar 

  • Thompson LU, Seidl MM, Rickard SE, Orcheson LJ, Fong HH . (1996). Antitumorigenic effect of a mammalian lignan precursor from flaxseed. Nutr Cancer 26: 159–165.

    Article  CAS  PubMed  Google Scholar 

  • Vincenz C, Dixit VM . (1997). Fas-associated death domain protein interleukin-1beta-converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD95- and p55-mediated death signaling. J Biol Chem 272: 6578–6583.

    Article  CAS  PubMed  Google Scholar 

  • Vlietstra RJ, van Alewijk DC, Hermans KG, van Steenbrugge GJ, Trapman J . (1998). Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res 58: 2720–2723.

    CAS  PubMed  Google Scholar 

  • Yokoyama T, Okano M, Noshita T, Funayama S, Ohtsuki K . (2003). Characterization of (−)-matairesinol as a potent inhibitor of casein kinase I in vitro. Biol Pharm Bull 26: 371–374.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Henning Walczak for providing the recombinant izTRAIL, Julian Downward for the ca-Akt construct and Perttu Terho for technical assistance in flow cytometry. We also thank Cecilia Sahlgren and all the members of our laboratory for critical comments on the paper and technical help during the course of this study. This work was supported by the Academy of Finland, the Sigrid Jusélius Foundation, the Research Institute of the Åbo Akademi University, the Foundation of the Åbo Akademi University, K Albin Johansson Foundation, Liv och Hälsa Foundation and Magnus Ehrnrooth Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Eriksson.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peuhu, E., Rivero-Müller, A., Stykki, H. et al. Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene 29, 898–908 (2010). https://doi.org/10.1038/onc.2009.386

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.386

Keywords

This article is cited by

Search

Quick links