Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A ‘DNA replication’ signature of progression and negative outcome in colorectal cancer

A Corrigendum to this article was published on 08 April 2010

Abstract

Colorectal cancer is one of the most frequent cancers worldwide. As the tumor-node-metastasis (TNM) staging classification does not allow to predict the survival of patients in many cases, additional prognostic factors are needed to better forecast their outcome. Genes involved in DNA replication may represent an underexplored source of such prognostic markers. Indeed, accidents during DNA replication can trigger ‘replicative stress’, one of the main features of cancer from earlier stages onward. In this study, we assessed the expression of 47 ‘DNA replication’ genes in primary tumors and adjacent normal tissues from a homogeneous series of 74 patients. We found that genes coding for translesional (TLS) DNA polymerases, initiation of DNA replication, S-phase signaling and protection of replication forks were significantly deregulated in tumors. We also observed that the overexpression of either the MCM7 helicase or the TLS DNA polymerase POLQ (if also associated with a concomitant overexpression of firing genes) was significantly related to poor patient survival. Our data suggest the existence of a ‘DNA replication signature’ that might represent a source of new prognostic markers. Such a signature could help in understanding the molecular mechanisms underlying tumor progression in colorectal cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Albertella MR, Lau AA, O’Connor MJ . (2005). The overexpression of specialized DNA polymerases in cancer. DNA repair 4: 583–593.

    Article  CAS  PubMed  Google Scholar 

  • Arentson E, Faloon P, Seo J, Moon E, Studts JM, Fremont DH et al. (2002). Oncogenic potential of the DNA replication licensing protein Cdt1. Oncogene 21: 1150–1158.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  PubMed  Google Scholar 

  • Bertwistle D, Ashworth A . (1998). Functions of the BRCA1 and BCRA2 genes. Curr Opin Genet Dev 8: 14–20.

    Article  CAS  PubMed  Google Scholar 

  • Betous R, Rey L, Wang G, Pillaire MJ, Puget N, Selves J et al. (2008). Role of TLS DNA polymerases eta and kappa in processing naturally occurring structured DNA in human cells. Mol Carcinogenesis 48: 369–378.

    Article  Google Scholar 

  • Braithwaite EK, Prasad R, Shock DD, Hou EW, Beard WA, Wilson SH . (2005). J Biol Chem 280: 18469–18475.

  • Brake T, Connor JP, Petereit DG, Lambert PF . (2003). Comparative analysis of cervical cancer in women and in a human papillomavirus-transgenic mouse model: identification of minichromosome maintenance protein 7 as an informative biomarker for human cervical cancer. Cancer Res 63: 8173–8180.

    CAS  PubMed  Google Scholar 

  • Brondello JM, Pillaire MJ, Rodriguez C, Gourraud PA, Selves J, Cazaux C et al. (2008). Novel evidences for a tumor suppressor role of Rev3, the catalytic subunit of Pol zeta. Oncogene 27: 6093–6101.

    Article  CAS  PubMed  Google Scholar 

  • Capp JP, Boudsocq F, Bertrand P, Laroche-Clary A, Pourquier P, Lopez B et al. (2006). The DNA polymerase lambda is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells. Nucleic Acids Res 34: 2998–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortez D, Glick G, Elledge SJ . (2004). Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci USA 101: 10078–10083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies RJ, Freeman A, Morris LS, Bingham S, Dilworth S, Scott I et al. (2002). Analysis of minichromosome maintenance proteins as a novel method for detection of colorectal cancer in stool. Lancet 359: 1917–1919.

    Article  CAS  PubMed  Google Scholar 

  • Eisenman RN . (2001). Deconstructing myc. Genes Dev 15: 2023–2030.

    Article  CAS  PubMed  Google Scholar 

  • Facoetti A, Ranza E, Benericetti E, Ceroni M, Tedeschi F, Nano R . (2006a). Minichromosome maintenance protein 7: a reliable tool for glioblastoma proliferation index. Anticancer Res 26: 1071–1075.

    CAS  PubMed  Google Scholar 

  • Facoetti A, Ranza E, Grecchi I, Benericetti E, Ceroni M, Morbini P et al. (2006b). Immunohistochemical evaluation of minichromosome maintenance protein 7 in astrocytoma grading. Anticancer Res 26: 3513–3516.

    CAS  PubMed  Google Scholar 

  • Gonzalez MA, Tachibana KE, Chin SF, Callagy G, Madine MA, Vowler SL et al. (2004). Geminin predicts adverse clinical outcome in breast cancer by reflecting cell-cycle progression. J Pathol 204: 121–130.

    Article  CAS  PubMed  Google Scholar 

  • Green BM, Morreale RJ, Ozaydin B, Derisi JL, Li JJ . (2006). Genome-wide mapping of DNA synthesis in Saccharomyces cerevisiae reveals that mechanisms preventing reinitiation of DNA replication are not redundant. Mol Biol Cell 17: 2401–2414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanawalt PC . (2007). Paradigms for the three Rs: DNA replication, recombination, and repair. Mol Cell 28: 702–707.

    Article  CAS  PubMed  Google Scholar 

  • Honeycutt KA, Chen Z, Koster MI, Miers M, Nuchtern J, Hicks J et al. (2006). Deregulated minichromosomal maintenance protein MCM7 contributes to oncogene driven tumorigenesis. Oncogene 25: 4027–4032.

    Article  CAS  PubMed  Google Scholar 

  • Karakaidos P, Taraviras S, Vassiliou LV, Zacharatos P, Kastrinakis NG, Kougiou D et al. (2004). Overexpression of the replication licensing regulators hCdt1 and hCdc6 characterizes a subset of non-small-cell lung carcinomas: synergistic effect with mutant p53 on tumor growth and chromosomal instability—evidence of E2F-1 transcriptional control over hCdt1. Am J Pathol 165: 1351–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura K, Bahar R, Seimiya M, Chiyo M, Wada A, Okada S et al. (2004). DNA polymerase theta is preferentially expressed in lymphoid tissues and up-regulated in human cancers. Int J Cancer 109: 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Kunkel TA . (2003). Considering the cancer consequences of altered DNA polymerase function. Cancer Cell 3: 105–110.

    Article  CAS  PubMed  Google Scholar 

  • Lemee F, Bavoux C, Pillaire MJ, Bieth A, Machado CR, Pena SD et al. (2006). Characterization of promoter regulatory elements involved in downexpression of the DNA polymerase kappa in colorectal cancer. Oncogene 26: 3387–3394.

    Article  PubMed  Google Scholar 

  • Li JQ, Wu F, Usuki H, Kubo A, Masaki T, Fujita J et al. (2003). Loss of p57KIP2 is associated with colorectal carcinogenesis. Int J Oncol 23: 1537–1543.

    CAS  PubMed  Google Scholar 

  • Lutzmann M, Maiorano D, Mechali M . (2006). A Cdt1–geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. EMBO J 25: 5764–5774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutzmann M, Mechali M . (2008). MCM9 binds Cdt1 and is required for the assembly of pre-replication complexes. Mol Cell 31: 190–200.

    Article  CAS  PubMed  Google Scholar 

  • Maiorano D, Cuvier O, Danis E, Mechali M . (2005). MCM8 is an MCM2–7-related protein that functions as a DNA helicase during replication elongation and not initiation. Cell 120: 315–328.

    Article  CAS  PubMed  Google Scholar 

  • Marra G, Boland CR . (1995). Hereditary nonpoloposis colorectal cancer (HNPCC): the syndrome, the genes and historical perspectives. J Nat Cancer Inst 87: 1114–1125.

    Article  CAS  PubMed  Google Scholar 

  • Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M et al. (1999). The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399: 700–704.

    Article  CAS  PubMed  Google Scholar 

  • Mattera L, Escaffit F, Pillaire MJ, Selves J, Tyteca S, Hoffmann JS et al. (2008). The p400/Tip60 ratio is critical for colorectal cancer cells proliferation through DNA damage response pathways. Oncogene 28: 1506–1517.

    Article  Google Scholar 

  • McIlwraith M, Vaisman A, Liu Y, Fanning E, Woodgate R, West S . (2005). Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 20: 783–792.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JR, Hoeijmakers JH, Niedernhofer LJ . (2003). Divide and conquer: nucleotide excision repair battles cancer and ageing. Curr Opin Cell Biol 15: 232–240.

    Article  CAS  PubMed  Google Scholar 

  • Nick McElhinny S, Havener J, Garcia-Diaz M, Juarez R, Bebenek K, Kee BL et al. (2005). A gradient of template dependence defines distinct biological roles for family X polymerases in non homologous end joining. Mol Cell 19: 357–366.

    Article  CAS  PubMed  Google Scholar 

  • Nishihara K, Shomori K, Fujioka S, Tokuyasu N, Inaba A, Osaki M et al. (2008). Minichromosome maintenance protein 7 in colorectal cancer: implication of prognostic significance. Int J Oncol 33: 245–251.

    CAS  PubMed  Google Scholar 

  • Ogi T, Lehman AR . (2006). The Y-family DNA polymerase kappa functions in mammalian nucleotide-excision repair. Nature Cell Biol 8: 640–642.

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan V, Callas P, Philips G, Trainer TD, Beatty BG . (2004). DNA replication regulation protein Mcm7 as a marker of proliferation in prostate cancer. J Clin Pathol 57: 1057–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Q, Fang Y, Xu Y, Zhang K, Hu X . (2005). Down-regulation of DNA polymerases kappa, eta, iota, and zeta in human lung, stomach, and colorectal cancers. Cancer Lett 217: 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Rey L, Sidorova J, Puget N, Boudsocq F, Biard D, Monnat RJ et al. (2009). Human DNA polymerase eta is required for common fragile site stability during unperturbed DNA replication. Mol Cell Biol 29: 3344–3354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancar A . (1994). Mechanisms of DNA excision repair. Science 266: 1954–1956.

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Masutani C, Yang LW, Schuffert A, Iwai S, Bahar I et al. (2004). High-efficiency bypass of DNA damage by human DNA polymerase Q. EMBO J 23: 4484–4494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha P, Saito T, Hama S, Arifin M, Kajiwara Y, Yamasaki F et al. (2007). Geminin: a good prognostic factor in high-grade astrocytic brain tumors. Cancer 109: 949–956.

    Article  CAS  PubMed  Google Scholar 

  • Sobol RW, Horton JK, Kühn R, Gu H, Singhal RK, Prasad R et al. (1996). Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature 379: 183–186. Erratum in: Nature 1996; 379: 848. Nature 1996 383: 457.

  • Venkatesan RN, Treuting PM, Fuller ED, Goldsby RE, Norwood TH, Gooley TA et al. (2007). Mutation at the polymerase active site of mouse DNA polymerase delta increases genomic instability and accelerates tumorigenesis. Mol Cell Biol 27: 7669–7682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Carbajal S, Vijg J, DiGiovanni J, Vasquez KM . (2008). DNA structure-induced genomic instability in vivo. J Nat Cancer Inst 100: 1815–1817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittschieben JP, Reshmi SC, Gollin SM, Wood RD . (2006). Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells. Cancer Res 66: 134–142.

    Article  CAS  PubMed  Google Scholar 

  • Woodward AM, Göhler T, Luciani MG, Oehlmann M, Ge X, Gartner A et al. (2006). Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173: 673–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the ‘GSO/3R’ Consortium for helpful discussions. We thank B Orsetti for CGH experiments (GSO aCGH platform, CRLCC Montpellier). We also acknowledge JJ Maoret (Q-PCR platform, IFR31, Toulouse), as well as F Viala and S Mazeres (IPBS, Toulouse) for iconography and technical assistance, respectively. This study was supported by INCa (Canceropole GSO, grant ACI ‘Genetic instability as a negative outcome’ 2004/07 and 2008/09 to CC; grants to JS, DT and PP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Cazaux.

Additional information

C Cazaux and JS Hoffmann share the leadership of the Genetic Instability and Cancer Group.

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillaire, MJ., Selves, J., Gordien, K. et al. A ‘DNA replication’ signature of progression and negative outcome in colorectal cancer. Oncogene 29, 876–887 (2010). https://doi.org/10.1038/onc.2009.378

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.378

Keywords

This article is cited by

Search

Quick links