Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Novel pathway in Bcr-Abl signal transduction involves Akt-independent, PLC-γ1-driven activation of mTOR/p70S6-kinase pathway

Abstract

In chronic myeloid leukemia, activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway is crucial for survival and proliferation of leukemic cells. Essential downstream molecules involve mammalian target of rapamycin (mTOR) and S6-kinase. Here, we present a comprehensive analysis of the molecular events involved in activation of these key signaling pathways. We provide evidence for a previously unrecognized phospholipase C-γ1 (PLC-γ1)-controlled mechanism of mTOR/p70S6-kinase activation, which operates in parallel to the classical Akt-dependent machinery. Short-term imatinib treatment of Bcr-Abl-positive cells caused dephosphorylation of p70S6-K and S6-protein without inactivation of Akt. Suppression of Akt activity alone did not affect phosphorylation of p70-S6K and S6. These results suggested the existence of an alternative mechanism for mTOR/p70S6-K activation. In Bcr-Abl-expressing cells, we detected strong PLC-γ1 activation, which was suppressed by imatinib. Pharmacological inhibition and siRNA knockdown of PLC-γ1 blocked p70S6-K and S6 phosphorylation. By inhibiting the Ca-signaling, CaMK and PKCs we demonstrated participation of these molecules in the pathway. Suppression of PLC-γ1 led to inhibition of cell proliferation and enhanced apoptosis. The novel pathway proved to be essential for survival and proliferation of leukemic cells and almost complete cell death was observed upon combined PLC-γ1 and Bcr-Abl inhibition. The pivotal role of PLC-γ1 was further confirmed in a mouse leukemogenesis model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arvisais EW, Romanelli A, Hou X, Davis JS . (2006). AKT-independent phosphorylation of TSC2 and activation of mTOR and ribosomal protein S6 kinase signaling by prostaglandin F2alpha. J Biol Chem 281: 26904–26913.

    Article  CAS  PubMed  Google Scholar 

  • Bartolovic K, Balabanov S, Hartmann U, Komor M, Boehmler AM, Buhring HJ et al. (2004). Inhibitory effect of imatinib on normal progenitor cells in vitro. Blood 103: 523–529.

    Article  CAS  PubMed  Google Scholar 

  • Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence Jr JC, Abraham RT . (1996). Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15: 5256–5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Muller-Brusselbach S et al. (2005). Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 19: 1774–1782.

    Article  CAS  PubMed  Google Scholar 

  • Copland M, Pellicano F, Richmond L, Allan EK, Hamilton A, Lee FY et al. (2007). BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergises with tyrosine kinase inhibitors. Blood 111: 2843–2853.

    Article  PubMed  Google Scholar 

  • Dengler J, von Bubnoff N, Decker T, Peschel C, Duyster J . (2005). Combination of imatinib with rapamycin or RAD001 acts synergistically only in Bcr-Abl-positive cells with moderate resistance to imatinib. Leukemia 19: 1835–1838.

    Article  CAS  PubMed  Google Scholar 

  • Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  • Easton JB, Houghton PJ . (2006). mTOR and cancer therapy. Oncogene 25: 6436–6446.

    Article  CAS  PubMed  Google Scholar 

  • Edinger AL, Thompson CB . (2002). Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 13: 2276–2288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falasca M, Logan SK, Lehto VP, Baccante G, Lemmon MA, Schlessinger J . (1998). Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J 17: 414–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giles FJ, Albitar M . (2005). Mammalian target of rapamycin as a therapeutic target in leukemia. Curr Mol Med 5: 653–661.

    Article  CAS  PubMed  Google Scholar 

  • Gotoh A, Miyazawa K, Ohyashiki K, Toyama K . (1994). Potential molecules implicated in downstream signaling pathways of p185BCR-ABL in Ph+ ALL involve GTPase-activating protein, phospholipase C-gamma 1, and phosphatidylinositol 3′-kinase. Leukemia 8: 115–120.

    CAS  PubMed  Google Scholar 

  • Grandage VL, Gale RE, Linch DC, Khwaja A . (2005). PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 19: 586–594.

    Article  CAS  PubMed  Google Scholar 

  • Hay N, Sonenberg N . (2004). Upstream and downstream of mTOR. Genes Dev 18: 1926–1945.

    Article  CAS  PubMed  Google Scholar 

  • Heidel F, Solem FK, Breitenbuecher F, Lipka DB, Kasper S, Thiede MH et al. (2006). Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood 107: 293–300.

    Article  CAS  PubMed  Google Scholar 

  • Kharas MG, Fruman DA . (2005). ABL oncogenes and phosphoinositide 3-kinase: mechanism of activation and downstream effectors. Cancer Res 65: 2047–2053.

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Kim JW, Zilberstein A, Margolis B, Kim JG, Schlessinger J et al. (1991). PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254. Cell 65: 435–441.

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Sim SS, Kim UH, Nishibe S, Wahl MI, Carpenter G et al. (1990). Tyrosine residues in bovine phospholipase C-gamma phosphorylated by the epidermal growth factor receptor in vitro. J Biol Chem 265: 3940–3943.

    CAS  PubMed  Google Scholar 

  • Kindler T, Breitenbuecher F, Kasper S, Stevens T, Carius B, Gschaidmeier H et al. (2003). In BCR-ABL-positive cells, STAT-5 tyrosine-phosphorylation integrates signals induced by imatinib mesylate and Ara-C. Leukemia 17: 999–1009.

    Article  CAS  PubMed  Google Scholar 

  • Konopka JB, Watanabe SM, Singer JW, Collins SJ, Witte ON . (1985). Cell lines and clinical isolates derived from Ph1-positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration. Proc Natl Acad Sci USA 82: 1810–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao HJ, Kume T, McKay C, Xu MJ, Ihle JN, Carpenter G . (2002). Absence of erythrogenesis and vasculogenesis in Plcg1-deficient mice. J Biol Chem 277: 9335–9341.

    Article  CAS  PubMed  Google Scholar 

  • Ly C, Arechiga AF, Melo JV, Walsh CM, Ong ST . (2003). Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin. Cancer Res 63: 5716–5722.

    CAS  PubMed  Google Scholar 

  • Maffucci T, Falasca M . (2007). Phosphoinositide 3-kinase-dependent regulation of phospholipase Cgamma. Biochem Soc Trans 35: 229–230.

    Article  CAS  PubMed  Google Scholar 

  • Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM et al. (2000). Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 96: 1070–1079.

    CAS  PubMed  Google Scholar 

  • Marley SB, Gordon MY . (2005). Chronic myeloid leukaemia: stem cell derived but progenitor cell driven. Clin Sci (Lond) 109: 13–25.

    Article  CAS  Google Scholar 

  • Marte BM, Meyer T, Stabel S, Standke GJ, Jaken S, Fabbro D et al. (1994). Protein kinase C and mammary cell differentiation: involvement of protein kinase C alpha in the induction of beta-casein expression. Cell Growth Differ 5: 239–247.

    CAS  PubMed  Google Scholar 

  • Miething C, Feihl S, Mugler C, Grundler R, von Bubnoff N, Lordick F et al. (2006). The Bcr-Abl mutations T315I and Y253 H do not confer a growth advantage in the absence of imatinib. Leukemia 20: 650–657.

    Article  CAS  PubMed  Google Scholar 

  • Mohi MG, Boulton C, Gu TL, Sternberg DW, Neuberg D, Griffin JD et al. (2004). Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci USA 101: 3130–3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rameh LE, Rhee SG, Spokes K, Kazlauskas A, Cantley LC, Cantley LG . (1998). Phosphoinositide 3-kinase regulates phospholipase Cgamma-mediated calcium signaling. J Biol Chem 273: 23750–23757.

    Article  CAS  PubMed  Google Scholar 

  • Ren R . (2005). Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5: 172–183.

    Article  CAS  PubMed  Google Scholar 

  • Ren SY, Xue F, Feng J, Skorski T . (2005). Intrinsic regulation of the interactions between the SH3 domain of p85 subunit of phosphatidylinositol-3 kinase and the protein network of BCR/ABL oncogenic tyrosine kinase. Exp Hematol 33: 1222–1228.

    Article  CAS  PubMed  Google Scholar 

  • Rhee S, Poulin B, Lee SB, Sekiya F . (2000) In: Cockroft S (ed). Biology of Phosphoinositides, vol. 27. Oxford University Press: Oxford.

    Google Scholar 

  • Rhee SG . (2001). Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70: 281–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson CJ, Schalm SS, Blenis J . (2004). PI3-kinase and TOR: PIKTORing cell growth. Semin Cell Dev Biol 15: 147–159.

    Article  CAS  PubMed  Google Scholar 

  • Saglio G, Cilloni D . (2004). Abl: the prototype of oncogenic fusion proteins. Cell Mol Life Sci 61: 2897–2911.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Sabatini DM . (2005). Growing roles for the mTOR pathway. Curr Opin Cell Biol 17: 596–603.

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Cantley LC . (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441: 424–430.

    Article  CAS  PubMed  Google Scholar 

  • Si J, Collins SJ . (2008). Activated Ca2+/calmodulin-dependent protein kinase IIgamma is a critical regulator of myeloid leukemia cell proliferation. Cancer Res 68: 3733–3742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK et al. (1997). Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 16: 6151–6161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G et al. (1995). Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86: 726–736.

    CAS  PubMed  Google Scholar 

  • Van Etten RA . (2002). Studying the pathogenesis of BCR-ABL+ leukemia in mice. Oncogene 21: 8643–8651.

    Article  CAS  PubMed  Google Scholar 

  • Walz C, Sattler M . (2006). Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML). Crit Rev Oncol Hematol 57: 145–164.

    Article  PubMed  Google Scholar 

  • Wilde JI, Watson SP . (2001). Regulation of phospholipase C gamma isoforms in haematopoietic cells: why one, not the other? Cell Signal 13: 691–701.

    Article  CAS  PubMed  Google Scholar 

  • Wing LY, Chen HM, Chuang PC, Wu MH, Tsai SJ . (2005). The mammalian target of rapamycin-p70 ribosomal S6 kinase but not phosphatidylinositol 3-kinase-Akt signaling is responsible for fibroblast growth factor-9-induced cell proliferation. J Biol Chem 280: 19937–19947.

    Article  CAS  PubMed  Google Scholar 

  • Wlodarski P, Kasprzycka M, Liu X, Marzec M, Robertson ES, Slupianek A et al. (2005). Activation of mammalian target of rapamycin in transformed B lymphocytes is nutrient dependent but independent of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase, insulin growth factor-I, and serum. Cancer Res 65: 7800–7808.

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN . (2006). TOR signaling in growth and metabolism. Cell 124: 471–484.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr E Buchdunger and J Roesel (Novartis Pharma, Basel, Switzerland) for the provision with imatinib, RAD001 and PKC 412, and Dr T Skorski (Temple University, Philadelphia, PA, USA) for Bcr-Abl expression constructs. We thank Dr M Schuler for his support during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Fischer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markova, B., Albers, C., Breitenbuecher, F. et al. Novel pathway in Bcr-Abl signal transduction involves Akt-independent, PLC-γ1-driven activation of mTOR/p70S6-kinase pathway. Oncogene 29, 739–751 (2010). https://doi.org/10.1038/onc.2009.374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.374

Keywords

This article is cited by

Search

Quick links