Abstract
Tasmanian devil facial tumor disease (DFTD) and canine transmissible venereal tumor (CTVT) are the only known naturally occurring clonally transmissible cancers. These cancers are transmitted by the physical transfer of viable tumor cells that can be transplanted across histocompatibility barriers into unrelated hosts. Despite their common etiology, DFTD and CTVT have evolved independently and have unique life histories and host adaptations. DFTD is a recently emerged aggressive facial tumor that is threatening the Tasmanian devil with extinction. CTVT is a sexually transmitted tumor of dogs that has a worldwide distribution and that probably arose thousands of years ago. By contrasting the biology, molecular genetics and immunology of these two unusual cancers, I highlight the common and unique features of clonally transmissible cancers, and discuss the implications of clonally transmissible cancers for host-pathogen evolution.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Bridging clinic and wildlife care with AI-powered pan-species computational pathology
Nature Communications Open Access 26 April 2023
-
First description of a widespread Mytilus trossulus-derived bivalve transmissible cancer lineage in M. trossulus itself
Scientific Reports Open Access 11 March 2021
-
The role of MHC genes in contagious cancer: the story of Tasmanian devils
Immunogenetics Open Access 11 July 2017
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Albanese F, Poli A, Millanta F, Abramo F . (2002). Primary cutaneous extragenital canine transmissible venereal tumour with Leishmania-laden neoplastic cells: a further suggestion of histiocytic origin? Vet Dermatol 13: 243–246.
Amariglio EN, Hakim I, Brok-Simoni F, Grossman Z, Katzir N, Harmelin A et al. (1991). Identity of rearranged LINE/c-MYC junction sequences specific for the canine transmissible venereal tumor. Proc Natl Acad Sci USA 88: 8136–8139.
Banfield WG, Woke PA, Mackay CM, Cooper HL . (1965). Mosquito transmission of a reticulum cell sarcoma of hamsters. Science 148: 1239–1240.
Barber MR, Yang TJ . (1999). Tumor infiltrating lymphocytes: CD8+ lymphocytes in canine transmissible venereal sarcomas at different stages of tumor growth. Anticancer Res 19 (2A): 1137–1142.
Barski G, Cornefert-Jensen F . (1966). Cytogenetic study of Sticker venereal sarcoma in European dogs. J Natl Cancer Inst 37: 787–797.
Bellingham Smith G, Washbourn JW . (1898). Infective venereal tumours in dogs. J Pathol Bacteriol 5: 99–110.
Brindley DC, Banfield WG . (1961). A contagious tumor of the hamster. J Natl Cancer Inst 26: 949–957.
Brown NO, Calvert C, MacEwen EG . (1980). Chemotherapeutic management of transmissible venereal tumors in 30 dogs. J Am Vet Med Assoc 176 (10 Part 1): 983–986.
Carry PJ, Prescott DM, Ogilvie GK . (1979). Resistance to Ehrlich ascites tumor in a strain of dystrophic mice. Cancer Res 39 (6 Part 1): 2139–2140.
Catone G, Marino G, Poglayen G, Gramiccia M, Ludovisi A, Zanghi A . (2003). Canine transmissible venereal tumour parasitized by Leishmania infantum. Vet Res Commun 27: 549–553.
Champy C, Champy M . (1935). Epithelioma transmissible du triton. Bull Assoc franc p l'etude du cancer 24: 206–220.
Chandler JP, Yang TJ . (1981). Canine transmissible venereal sarcoma: distribution of T and B lymphocytes in blood, draining lymph nodes and tumours at different stages of growth. Br J Cancer 44: 514–521.
Choi Y, Ishiguro N, Shinagawa M, Kim CJ, Okamoto Y, Minami S et al. (1999). Molecular structure of canine LINE-1 elements in canine transmissible venereal tumor. Anim Genet 30: 51–53.
Choi YK, Kim CJ . (2002). Sequence analysis of canine LINE-1 elements and p53 gene in canine transmissible venereal tumor. J Vet Sci 3: 285–292.
Chou PC, Chuang TF, Jan TR, Gion HC, Huang YC, Lei HJ et al. (2009). Effects of immunotherapy of IL-6 and IL-15 plasmids on transmissible venereal tumor in beagles. Vet Immunol Immunopathol 130: 25–34.
Chu RM, Lin CY, Liu CC, Yang SY, Hsiao YW, Hung SW et al. (2001a). Proliferation characteristics of canine transmissible venereal tumor. Anticancer Res 21: 4017–4024.
Chu RM, Sun TJ, Yang HY, Wang DG, Liao KW, Chuang TF et al. (2001b). Heat shock proteins in canine transmissible venereal tumor. Vet Immunol Immunopathol 82: 9–21.
Cockrill JM, Beasley JN . (1975). Ultrastructural characteristics of canine transmissible venereal tumor at various stages of growth and regression. Am J Vet Res 36: 677–681.
Cockrill JM, Beasley JN . (1979). Transmission of transmissible venereal tumor of the dog to the coyote. Am J Vet Res 40: 409–410.
Cohen D . (1972). Detection of humoral antibody to the transmissible venereal tumour of the dog. Int J Cancer 10: 207–212.
Cohen D . (1973). The biological behaviour of the transmissible venereal tumour in immunosuppressed dogs. Eur J Cancer 9: 253–258.
Cohen D . (1980). In vitro cell-mediated cytotoxicity and antibody-dependent cellular cytotoxicity to the transmissible venereal tumor of the dog. J Natl Cancer Inst 64: 317–321.
Cohen D . (1985). The canine transmissible venereal tumor: a unique result of tumor progression. Adv Cancer Res 43: 75–112.
Cohen D, Shalev A, Krup M . (1984). Lack of beta 2-microglobulin on the surface of canine transmissible venereal tumor cells. J Natl Cancer Inst 72: 395–401.
Cohen D, Steel GG . (1972). Thymidine labelling studies in a transmissible venereal tumour of the dog. Br J Cancer 26: 413–419.
Cooper HL, Mackay CM, Banfield WG . (1964). Chromosome studies of a contagious reticulum cell sarcoma of the Syrian hamster. J Natl Cancer Inst 33: 691–706.
Coupland C, Anthony W . (2007). Devils of the Alpine Project: Field monitoring project. Tasmanian Naturalist 129: 65–81.
Crile GW, Beebe SP . (1908). Transfusion of blood in the transplantable lymphosarcoma of dogs. J Med Res 13: 385–405.
Das U, Das AK . (2000). Review of canine transmissible venereal sarcoma. Vet Res Commun 24: 545–556.
Dass LL, Sahay PN . (1989). Surgical treatment of canine transmissible venereal tumour—a retrospective study. Indian Vet J 66: 255–258.
de Brito CP, de Oliveira CM, Soares FA, Faustino M, de Oliveira CA . (2006). Immunohistochemical determination of estrogen receptor-alpha in vaginal and tumor tissues of healthy and TVT-affected bitches and their relation to serum concentrations of estradiol-17beta and progesterone. Theriogenology 66: 1587–1592.
DeMonbreun WA, Goodpasture EW . (1934). An experimental investigation concerning the nature of contageous lymphosarcoma of dogs. Am J Cancer 21: 295–321.
Dingli D, Nowak MA . 2006. Cancer biology: infectious tumour cells. Nature 443: 35–36.
Epstein RB, Bennett BT . (1974). Histocompatibility typing and course of canine venereal tumors transplanted into unmodified random dogs. Cancer Res 34: 788–793.
Feldman WH . (1929). So-called infectious sarcoma of the dog in an unusual anatomical situation. Am J Pathol 5: 183–195.
Fenton MA, Yang TJ . (1988). Role of humoral immunity in progressive and regressive and metastatic growth of the canine transmissible venereal sarcoma. Oncology 45: 210–213.
Ferreira AJ, Jaggy A, Varejao AP, Ferreira ML, Correia JM, Mulas JM et al. (2000). Brain and ocular metastases from a transmissible venereal tumour in a dog. J Small Anim Pract 41: 165–168.
Fujinaga T, Yamashita M, Yoshida MC, Mizuno S, Okamoto Y, Tajima M et al. (1989). Chromosome analysis of canine transmissible sarcoma cells. J Vet Med 36: 481–489.
Gartner HV, Seidl C, Luckenbach C, Schumm G, Seifried E, Ritter H et al. (1996). Genetic analysis of a sarcoma accidentally transplanted from a patient to a surgeon. N Engl J Med 335: 1494–1496.
Gimeno EJ, Massone AR, Marino FP, Idiart JR . (1995). Intermediate filament expression and lectin histochemical features of canine transmissible venereal tumour. APMIS 103: 645–650.
Gonzalez CM, Griffey SM, Naydan DK, Flores E, Cepeda R, Cattaneo G et al. (2000). Canine transmissible venereal tumour: a morphological and immunohistochemical study of 11 tumours in growth phase and during regression after chemotherapy. J Comp Pathol 122: 241–248.
Hamede RK, McCallum H, Jones M . (2008). Seasonal, demographic and density-related patterns of contact between Tasmanian devils (Sarcophilus harrisii): implications for transmission of devil facial tumour disease. Austral Ecol 33: 614–622.
Hawkins CE, Baars C, Hesterman H, GJ H, Jones ME, Lazenby B et al. (2006). Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol Conserv 131: 307–324.
Hawkins CE, McCallum H, Mooney N, Jones M, Holdsworth M . (2009). Sarcophilus harrisii. In: IUCN red list of threatened species. Version 2009.1 〈www.iucnredlist.org〉.
Hernandez-Jauregui P, Gonzalez-Angulo A, De La Vega G . (1973). Ultrastructural and histochemical pattern of regressing canine venereal lymphoma after cyclophosphamide treatment. J Natl Cancer Inst 51: 1187–1196.
Hicks AM, Riedlinger G, Willingham MC, Alexander-Miller MA, Von Kap-Herr C, Pettenati MJ et al. (2006). Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc Natl Acad Sci USA 103: 7753–7758.
Higgins DA . (1966). Observations on the canine transmissible venereal tumour as seen in the Bahamas. Vet Rec 79: 67–71.
Hill DL, Yang TJ, Wachtel A . (1984). Canine transmissible venereal sarcoma: tumor cell and infiltrating leukocyte ultrastructure at different growth stages. Vet Pathol 21: 39–45.
Hsiao YW, Liao KW, Chung TF, Liu CH, Hsu CD, Chu RM . (2008). Interactions of host IL-6 and IFN-gamma and cancer-derived TGF-beta1 on MHC molecule expression during tumor spontaneous regression. Cancer Immunol Immunother 57: 1091–1104.
Hsiao YW, Liao KW, Hung SW, Chu RM . (2002). Effect of tumor infiltrating lymphocytes on the expression of MHC molecules in canine transmissible venereal tumor cells. Vet Immunol Immunopathol 87: 19–27.
Hsiao YW, Liao KW, Hung SW, Chu RM . (2004). Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-beta 1 and restores the lymphokine-activated killing activity. J Immunol 172: 1508–1514.
Idowu L . (1977). The chromosomes of the transmissible venereal tumour of dogs in Ibadan, Nigeria. Res Vet Sci 22: 271–273.
Janeway CA, Travers P, Walport M, Shlomchik M . (2001). Immunobiology. Garland Publishing, New York, NY.
Jones ME, Cockburn A, Hamede R, Hawkins C, Hesterman H, Lachish S et al. (2008). Life-history change in disease-ravaged Tasmanian devil populations. Proc Natl Acad Sci USA 105: 10023–10027.
Jones ME, Jarman PJ, Lees CM, Hesterman H, Hamede RK, Mooney NJ et al. (2007). Conservation management of Tasmanian devils in the context of an emerging, extinction-threatening disease: devil facial tumour disease. EcoHealth 4: 326–337.
Jones ME, Paetkau D, Geffen E, Moritz C . (2004). Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol Ecol 13: 2197–2209.
Kakpakova ES, Pogosyanz EE, Ponomarkov VI . (1968). Peculiarities of the karyotype of the transmissible sarcoma cells in the dog. Vopr Onkol 14: 43–50.
Karlson AG, Mann FC . (1952). The transmissible venereal tumor of dogs: observations on forty generations of experimental transfers. Ann NY Acad Sci 54: 1197–1213.
Katzir N, Arman E, Cohen D, Givol D, Rechavi G . (1987). Common origin of transmissible venereal tumors (TVT) in dogs. Oncogene 1: 445–448.
Katzir N, Rechavi G, Cohen JB, Unger T, Simoni F, Segal S et al. (1985). ‘Retroposon’ insertion into the cellular oncogene c-myc in canine transmissible venereal tumor. Proc Natl Acad Sci USA 82: 1054–1058.
Kauffman HM, McBride MA, Cherikh WS, Spain PC, Marks WH, Roza AM . (2002). Transplant tumor registry: donor related malignancies. Transplantation 74: 358–362.
Kennedy JR, Yang TJ, Allen PL . (1977). Canine transmissible venereal sarcoma: electron microscopic changes with time after transplantation. Br J Cancer 36: 375–385.
Kimeto B, Mugera GM . (1974). Transmissible veneral tumour of dog in Kenya. Bul Epizoot Dis Afr 22: 327–329.
Kreiss A, Fox N, Bergfeld J, Quinn SJ, Pyecroft S, Woods GM . (2008). Assessment of cellular immune responses of healthy and diseased Tasmanian devils (Sarcophilus harrisii). Dev Comp Immunol 32: 544–553.
Kreiss A, Wells B, Woods GM . (2009). The humoral immune response of the Tasmanian devil (Sarcophilus harrisii) against horse red blood cells. Vet Immunol Immunopathol 130: 135–137.
Kurbel S, Plestina S, Vrbanec D . (2007). Occurrence of the acquired immunity in early vertebrates due to danger of transmissible cancers similar to canine venereal tumors. Med Hypotheses 68: 1185–1186.
Lachish S, Jones M, McCallum H . (2007). The impact of disease on the survival and population growth rate of the Tasmanian devil. J Anim Ecol 76: 926–936.
Lachish S, McCallum H, Jones M . (2009). Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii). J Anim Ecol 78: 427–436.
Laird DJ, De Tomaso AW, Weissman IL . (2005). Stem cells are units of natural selection in a colonial ascidian. Cell 123: 1351–1360.
Liao KW, Hung SW, Hsiao YW, Bennett M, Chu RM . (2003a). Canine transmissible venereal tumor cell depletion of B lymphocytes: molecule(s) specifically toxic for B cells. Vet Immunol Immunopathol 92: 149–162.
Liao KW, Lin ZY, Pao HN, Kam SY, Wang FI, Chu RM . (2003b). Identification of canine transmissible venereal tumor cells using in situ polymerase chain reaction and the stable sequence of the long interspersed nuclear element. J Vet Diagn Invest 15: 399–406.
Liu CC, Wang YS, Lin CY, Chuang TF, Liao KW, Chi KH et al. (2008). Transient downregulation of monocyte-derived dendritic-cell differentiation, function, and survival during tumoral progression and regression in an in vivo canine model of transmissible venereal tumor. Cancer Immunol Immunother 57: 479–491.
Loh R, Bergfeld J, Hayes D, O’Hara A, Pyecroft S, Raidal S et al. (2006a). The pathology of devil facial tumor disease (DFTD) in Tasmanian Devils (Sarcophilus harrisii). Vet Pathol 43: 890–895.
Loh R, Hayes D, Mahjoor A, O’Hara A, Pyecroft S, Raidal S . (2006b). The immunohistochemical characterization of devil facial tumor disease (DFTD) in the Tasmanian devil (Sarcophilus harrisii). Vet Pathol 43: 896–903.
Lucke B, Schlumberger HG . (1949). Neoplasia in cold-blooded vertebrates. Physiol Rev 29: 91–126.
Lunney D, Jones M, McCallum H . (2008). Lessons from the looming extinction of the Tasmanian devil. Pacific Cons Biol 14: 151–153.
Marchal T, Chabanne L, Kaplanski C, Rigal D, Magnol JP . (1997). Immunophenotype of the canine transmissible venereal tumour. Vet Immunol Immunopathol 57: 1–11.
McCallum H . (2008). Tasmanian devil facial tumour disease: lessons for conservation biology. Trends Ecol Evol (Personal edition) 23: 631–637.
McCallum H, Jones M . (2006). To lose both would look like carelessness: Tasmanian devil facial tumour disease. PLoS Biol 4: e342.
McCallum H, Tompkins DM, Jones M, Lachish S, Marvanek S, Lazenby B et al. (2007). Distribution and impacts of Tasmanian devil facial tumor disease. EcoHealth 4: 318–325.
McKenna JM, Prier JE . (1966). Some immunologic aspects of canine neoplasms. Cancer Res 26: 137–142.
Mello Martins MI, Ferreira de Souza F, Gobello C . (2005). Canine transmissible venereal tumor: etiology, pathology, diagnosis and treatment. In: Concannon PW, England G, Verstegen JI, Linde-Forsberg C (eds). Recent Advances in Small Animal Reproduction. International Veterinary Information Service Ithaca: NY.
Mizuno S, Fujinaga T, Hagio M . (1994). Role of lymphocytes in spontaneous regression of experimentally transplanted canine transmissible venereal sarcoma. J Vet Med Sci 56: 15–20.
Montali RJ, Bush M, Cromie R, Holland SM, Maslow JN, Worley M et al. (1998). Primary Mycobacterium avium complex infections correlate with lowered cellular immune reactivity in Matschie's tree kangaroos (Dendrolagus matschiei). J Infect Dis 178: 1719–1725.
Mozos E, Mendez A, Gomez-Villamandos JC, Martin De Las Mulas J, Perez J . (1996). Immunohistochemical characterization of canine transmissible venereal tumor. Vet Pathol 33: 257–263.
Mukaratirwa S, Chimonyo M, Obwolo M, Gruys E, Nederbragt H . (2004). Stromal cells and extracellular matrix components in spontaneous canine transmissible tumour at different stages of growth. Histol Histopathol 19: 1117–1123.
Mukaratirwa S, Chiwome T, Chitanga S, Bhebhe E . (2006). Canine transmissible venereal tumour: assessment of mast cell numbers as indicators of the growth phase. Vet Res Commun 30: 613–621.
Murgia C, Pritchard JK, Kim SY, Fassati A, Weiss RA . (2006). Clonal origin and evolution of a transmissible cancer. Cell 126: 477–487.
Murray M, James ZH, Martin WB . (1969). A study of the cytology and karyotype of the canine transmissible venereal tumour. Res Vet Sci 10: 565–568.
Ndiritu CG, Mbogwa SW, Sayer PD . (1977). Extragenitally located transmissible venereal tumor in dogs. Mod Vet Prac 58: 940–946.
Nowinsky M . (1876). Zur Frage ueber die Impfung der krebsigen Geschwuelste. Zentralbl Med Wissensch 14: 790–791.
Obendorf DL, McGlashan ND . (2008). Research priorities in the Tasmanian devil facial tumour debate. Eur J Oncol 13: 229–238.
Oshimura M, Sasaki M, Makino S . (1973). Chromosomal banding patterns in primary and transplanted venereal tumors of the dog. J Natl Cancer Inst 51: 1197–1203.
Owen D, Pemberton D . (2005). Tasmanian Devil: A Unique and Threatened Animal. Allen & Unwin, Crows Nest, NSW, Australia.
Park MS, Kim Y, Kang MS, Oh SY, Cho DY, Shin NS et al. (2006). Disseminated transmissible venereal tumor in a dog. J Vet Diagn Invest 18: 130–133.
Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB et al. (2004). Genetic structure of the purebred domestic dog. Science 304: 1160–1164.
Pearse AM, Swift K . (2006). Allograft theory: transmission of devil facial-tumour disease. Nature 439: 549.
Perez J, Day MJ, Mozos E . (1998). Immunohistochemical study of the local inflammatory infiltrate in spontaneous canine transmissible venereal tumour at different stages of growth. Vet Immunol Immunopathol 64: 133–147.
Powell White C . (1902). Contagious growths in dogs. Br Med J 2: 176–177.
Powers RD . (1968). Immunologic properties of canine transmissible venereal sarcoma. Am J Vet Res 29: 1637–1645.
Pyecroft SB, Pearse AM, Loh R, Swift K, Belov K, Fox N et al. (2007). Towards a case definition for devil facial tumour disease: what is it? EcoHealth 4: 346–351.
Rebbeck CA, Thomas R, Breen M, Leroi AM, Burt A . (2009). Origins and evolution of a transmissible cancer. Evolution 63: 2340–2349.
Richardson VB, Sapp WJ, Adams EW . (1987). The distribution of C-bands in canine transmissible venereal tumor cells. Cornell Vet 77: 161–167.
Rust JH . (1949). Transmissible lymphosarcoma in the dog. J Am Vet Med Assoc 114: 10–14.
Sala-Torra O, Hanna C, Loken MR, Flowers ME, Maris M, Ladne PA et al. (2006). Evidence of donor-derived hematologic malignancies after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 12: 511–517.
Sandusky GE, Carlton WW, Wightman KA . (1987). Diagnostic immunohistochemistry of canine round cell tumors. Vet Pathol 24: 495–499.
Savolainen P, Zhang YP, Luo J, Lundeberg J, Leitner T . (2002). Genetic evidence for an East Asian origin of domestic dogs. Science 298: 1610–1613.
Scarpelli KC, Valladao ML, Metze K . (2008). Predictive factors for the regression of canine transmissible venereal tumor during vincristine therapy. Vet J; e-pub ahead of print 23 December 2008.
Siddle HV, Kreiss A, Eldridge MD, Noonan E, Clarke CJ, Pyecroft S et al. (2007a). Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc Natl Acad Sci USA 104: 16221–16226.
Siddle HV, Sanderson C, Belov K . (2007b). Characterization of major histocompatibility complex class I and class II genes from the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 59: 753–760.
Sofuni T, Makino S . (1963). A supplementary study on the chromosomes of veneral tumors of the dog. Gann 54: 149–154.
Sticker A . (1906). Transplantables Rundzellensarkom des Hundes. Z Krebsforsch 4: 227–314.
Stone WH, Bruun DA, Foster EB, Manis GS, Hoffman ES, Saphire DG et al. (1998). Absence of a significant mixed lymphocyte reaction in a marsupial (Monodelphis domestica). Lab Anim Sci 48: 184–189.
Stubbs EL, Furth J . (1934). Experimental studies on venereal sarcoma of the dog. Am J Pathol 10: 275–286.
Thacher C, Bradley RL . (1983). Vulvar and vaginal tumors in the dog: a retrospective study. J Am Vet Med Assoc 183: 690–692.
Thorburn MJ, Gwynn RV, Ragbeer MS, Lee BI . (1968). Pathological and cytogenetic observations on the naturally occurring canine venereal tumour in Jamaica (Sticker's tumour). Br J Cancer 22: 720–727.
Tolar J, Neglia JP . (2003). Transplacental and other routes of cancer transmission between individuals. J Pediatr Hematol Oncol 25: 430–434.
Trail PA, Yang TJ . (1985). Canine transmissible venereal sarcoma: quantitation of T-lymphocyte subpopulations during progressive growth and spontaneous tumor regression. J Natl Cancer Inst 74: 461–467.
Vazquez-Mota N, Simon-Martinez J, Cordova-Alarcon E, Lagunes L, Fajardo R . (2008). The T963C mutation of TP53 gene does not participate in the clonal origin of canine TVT. Vet Res Commun 32: 187–191.
Vila C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL et al. (1997). Multiple and ancient origins of the domestic dog. Science 276: 1687–1689.
VonHoldt BM, Ostrander EA . (2006). The singular history of a canine transmissible tumor. Cell 126: 445–447.
Wade H . (1908). An experimental investigation of infective sarcoma of the dog, with a consideration of its relationship to cancer. J Pathol Bacteriol 12: 384–425.
Weber WT, Nowell PC, Hare WC . (1965). Chromosome studies of a transplanted and a primary canine venereal sarcoma. J Natl Cancer Inst 35: 537–547.
Woods GM, Kreiss A, Belov K, Siddle HV, Obendorf DL, Muller HK . (2007). The immune response of the Tasmanian devil (Sarcophilus harrisii) and devil facial tumour disease. EcoHealth 4: 338–345.
Wright DH, Peel S, Cooper EH, Hughes DT . (1970). Transmissible venereal sarcoma of dogs: a histochemical and chromosomal analysis of tumours in Uganda. Rev Eur Etud Clin Biol 15: 155–160.
Yang TJ, Chandler JP, Dunne-Anway S . (1987). Growth stage dependent expression of MHC antigens on the canine transmissible venereal sarcoma. Br J Cancer 55: 131–134.
Yang TJ, Jones JB . (1973). Canine transmissible venereal sarcoma: transplantation studies in neonatal and adult dogs. J Natl Cancer Ins 51: 1915–1918.
Acknowledgements
I thank Mike Stratton, Gabriele Marino, Ariberto Fassati, Austin Burt, Robin Weiss, Clare Rebbeck, David Obendorf, Hannah Bender, Armand Leroi, Claudio Murgia, Claire Mahoney, John Marshall, Jenny Graves, Heather Murchison and Kirsten Fairfax for helpful discussions and critical reading of the paper. I also thank Andrew King and Frances Martin in the Sanger Library for help with obtaining papers. This study was supported by an Overseas Biomedical Fellowship from the NHMRC, and a L’Oréal UNESCO UK and Ireland For Women in Science Fellowship.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Murchison, E. Clonally transmissible cancers in dogs and Tasmanian devils. Oncogene 27 (Suppl 2), S19–S30 (2008). https://doi.org/10.1038/onc.2009.350
Published:
Issue Date:
DOI: https://doi.org/10.1038/onc.2009.350
Keywords
- transmissible cancer
- allograft
- dog
- Tasmanian devil
- CTVT
- DFTD
This article is cited by
-
Bridging clinic and wildlife care with AI-powered pan-species computational pathology
Nature Communications (2023)
-
Population genetics of clonally transmissible cancers
Nature Ecology & Evolution (2022)
-
First description of a widespread Mytilus trossulus-derived bivalve transmissible cancer lineage in M. trossulus itself
Scientific Reports (2021)
-
Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii)
Cellular and Molecular Life Sciences (2020)
-
Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer
Conservation Genetics (2019)