Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Notch-1 activates estrogen receptor-α-dependent transcription via IKKα in breast cancer cells

Abstract

Approximately 80% of breast cancers express the estrogen receptor-α (ERα) and are treated with anti-estrogens. Resistance to these agents is a major cause of mortality. We have shown that estrogen inhibits Notch, whereas anti-estrogens or estrogen withdrawal activate Notch signaling. Combined inhibition of Notch and estrogen signaling has synergistic effects in ERα-positive breast cancer models. However, the mechanisms whereby Notch-1 promotes the growth of ERα-positive breast cancer cells are unknown. Here, we demonstrate that Notch-1 increases the transcription of ERα-responsive genes in the presence or absence of estrogen via a novel chromatin crosstalk mechanism. Our data support a model in which Notch-1 can activate the transcription of ERα-target genes via IKKα-dependent cooperative chromatin recruitment of Notch–CSL–MAML1 transcriptional complexes (NTC) and ERα, which promotes the recruitment of p300. CSL binding elements frequently occur in close proximity to estrogen-responsive elements (EREs) in the human and mouse genomes. Our observations suggest that a hitherto unknown Notch-1/ERα chromatin crosstalk mediates Notch signaling effects in ERα-positive breast cancer cells and contributes to regulate the transcriptional functions of ERα itself.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aguilera C, Hoya-Arias R, Haegeman G, Espinosa L, Bigas A . (2004). Recruitment of IkappaBalpha to the hes1 promoter is associated with transcriptional repression. Proc Natl Acad Sci USA 101: 16537–16542.

    Article  CAS  Google Scholar 

  • Albanese C, Wu K, D'Amico M, Jarrett C, Joyce D, Hughes J et al. (2003). IKKalpha regulates mitogenic signaling through transcriptional induction of cyclin D1 via Tcf. Mol Biol Cell 14: 585–599.

    Article  CAS  Google Scholar 

  • Arsura M, Panta GR, Bilyeu JD, Cavin LG, Sovak MA, Oliver AA et al. (2003). Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-beta1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 22: 412–425.

    Article  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ . (1999). Notch signaling: cell fate control and signal integration in development. Science 284: 770–776.

    CAS  Google Scholar 

  • Baonza A, Freeman M . (2005). Control of cell proliferation in the Drosophila eye by Notch signaling. Dev Cell 8: 529–539.

    Article  CAS  Google Scholar 

  • Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR et al. (2008). Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3: 429–441.

    Article  CAS  Google Scholar 

  • Bunone G, Briand PA, Miksicek RJ, Picard D . (1996). Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15: 2174–2183.

    Article  CAS  Google Scholar 

  • Callahan R, Egan SE . (2004). Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 9: 145–163.

    Article  Google Scholar 

  • Callahan R, Raafat A . (2001). Notch signaling in mammary gland tumorigenesis. J Mammary Gland Biol Neoplasia 6: 23–36.

    Article  CAS  Google Scholar 

  • Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H . (2001). Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276: 9817–9824.

    Article  CAS  Google Scholar 

  • Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J et al. (2006). Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38: 1289–1297.

    Article  CAS  Google Scholar 

  • Cenni B, Picard D . (1999). Ligand-independent activation of steroid receptors: new roles for old players. Trends Endocrinol Metab 10: 41–46.

    Article  CAS  Google Scholar 

  • Cheng P, Zlobin A, Volgina V, Gottipati S, Osborne B, Simel EJ et al. (2001). Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells. J Immunol 167: 4458–4467.

    Article  CAS  Google Scholar 

  • Dickson BC, Mulligan AM, Zhang H, Lockwood G, O'Malley FP, Egan SE et al. (2007). High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol 20: 685–693.

    Article  CAS  Google Scholar 

  • Dontu G, Jackson KW, McNicholas E, Kawamura M, Abdallah WM, Wicha MS . (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6: 605–615.

    Article  Google Scholar 

  • Dubik D, Shiu RP . (1992). Mechanism of estrogen activation of c-myc oncogene expression. Oncogene 7: 1587–1594.

    CAS  Google Scholar 

  • Eeckhoute J, Carroll JS, Geistlinger TR, Torres-Arzayus MI, Brown M . (2006). A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev 20: 2513–2526.

    Article  CAS  Google Scholar 

  • ElShamy WM, Livingston DM . (2004). Identification of BRCA1-IRIS, a BRCA1 locus product. Nat Cell Biol 6: 954–967.

    Article  CAS  Google Scholar 

  • Fernandez-Majada V, Aguilera C, Villanueva A, Vilardell F, Robert-Moreno A, Aytes A et al. (2007). Nuclear IKK activity leads to dysregulated Notch-dependent gene expression in colorectal cancer. Proc Natl Acad Sci USA 104: 276–281.

    Article  CAS  Google Scholar 

  • Gallahan D, Callahan R . (1997). The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 14: 1883–1890.

    Article  CAS  Google Scholar 

  • Gallahan D, Jhappan C, Robinson G, Hennighausen L, Sharp R, Kordon E et al. (1996). Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res 56: 1775–1785.

    CAS  Google Scholar 

  • Gillesby BE, Stanostefano M, Porter W, Safe S, Wu ZF, Zacharewski TR . (1997). Identification of a motif within the 5′ regulatory region of pS2 which is responsible for AP-1 binding and TCDD-mediated suppression. Biochemistry 36: 6080–6089.

    Article  CAS  Google Scholar 

  • Green KA, Carroll JS . (2007). Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nat Rev Cancer 7: 713–722.

    Article  CAS  Google Scholar 

  • Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J et al. (2005). Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9: 617–628.

    Article  CAS  Google Scholar 

  • Hayward P, Brennan K, Sanders P, Balayo T, DasGupta R, Perrimon N et al. (2005). Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity. Development 132: 1819–1830.

    Article  CAS  Google Scholar 

  • Iso T, Sartorelli V, Poizat C, Iezzi S, Wu HY, Chung G et al. (2001). HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol 21: 6080–6089.

    Article  CAS  Google Scholar 

  • Jakacka M, Ito M, Weiss J, Chien PY, Gehm BD, Jameson JL . (2001). Estrogen receptor binding to DNA is not required for its activity through the nonclassical AP1 pathway. J Biol Chem 276: 13615–13621.

    Article  CAS  Google Scholar 

  • Jehn BM, Bielke W, Pear WS, Osborne BA . (1999). Cutting edge: protective effects of notch-1 on TCR-induced apoptosis. J Immunol 162: 635–638.

    CAS  Google Scholar 

  • Jeltsch JM, Roberts M, Schatz C, Garnier JM, Brown AM, Chambon P . (1987). Structure of the human oestrogen-responsive gene pS2. Nucleic Acids Res 15: 1401–1414.

    Article  CAS  Google Scholar 

  • Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H et al. (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270: 1491–1494.

    Article  CAS  Google Scholar 

  • Kiaris H, Politi K, Grimm LM, Szabolcs M, Fisher P, Efstratiadis A et al. (2004). Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol 165: 695–705.

    Article  CAS  Google Scholar 

  • Klinakis A, Szabolcs M, Politi K, Kiaris H, Artavanis-Tsakonas S, Efstratiadis A . (2006). Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci USA 103: 9262–9267.

    Article  CAS  Google Scholar 

  • Laganiere J, Deblois G, Lefebvre C, Bataille AR, Robert F, Giguere V . (2005). From the cover: location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc Natl Acad Sci USA 102: 11651–11656.

    Article  CAS  Google Scholar 

  • Likhite VS, Stossi F, Kim K, Katzenellenbogen BS, Katzenellenbogen JA . (2006). Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol Endocrinol 20: 3120–3132.

    Article  CAS  Google Scholar 

  • Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M et al. (2007). Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 3: e87.

    Article  Google Scholar 

  • Maier MM, Gessler M . (2000). Comparative analysis of the human and mouse hey1 promoter: hey genes are new notch target genes [In Process Citation]. Biochem Biophys Res Commun 275: 652–660.

    Article  CAS  Google Scholar 

  • Martin MB, Franke TF, Stoica GE, Chambon P, Katzenellenbogen BS, Stoica BA et al. (2000). A role for Akt in mediating the estrogenic functions of epidermal growth factor and insulin-like growth factor I. Endocrinology 141: 4503–4511.

    Article  CAS  Google Scholar 

  • Miele L . (2006). Notch signaling. Clin Cancer Res 12: 1074–1079.

    Article  CAS  Google Scholar 

  • Miele L . (2008). Rational targeting of Notch signaling in breast cancer. Expert Rev Anticancer Ther 8: 1197–1202.

    Article  CAS  Google Scholar 

  • Nam Y, Sliz P, Pear WS, Aster JC, Blacklow SC . (2007). Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription. Proc Natl Acad Sci USA 104: 2103–2108.

    Article  CAS  Google Scholar 

  • Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, DiRenzo J et al. (1997). Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol 17: 5338–5347.

    Article  CAS  Google Scholar 

  • Nickoloff BJ, Osborne BA, Miele L . (2003). Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 22: 6598–6608.

    Article  CAS  Google Scholar 

  • Nunez AM, Berry M, Imler JL, Chambon P . (1989). The 5′ flanking region of the pS2 gene contains a complex enhancer region responsive to oestrogens, epidermal growth factor, a tumour promoter (TPA), the c-Ha-ras oncoprotein and the c-jun protein. EMBO J 8: 823–829.

    Article  CAS  Google Scholar 

  • Park KJ, Krishnan V, O'Malley BW, Yamamoto Y, Gaynor RB . (2005). Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell 18: 71–82.

    Article  CAS  Google Scholar 

  • Perissi V, Rosenfeld MG . (2005). Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 6: 542–554.

    Article  CAS  Google Scholar 

  • Perkins ND . (2007). Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8: 49–62.

    Article  CAS  Google Scholar 

  • Porter W, Saville B, Hoivik D, Safe S . (1997). Functional synergy between the transcription factor Sp1 and the estrogen receptor. Mol Endocrinol 11: 1569–1580.

    Article  CAS  Google Scholar 

  • Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H et al. (2001). Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 20: 3427–3436.

    Article  CAS  Google Scholar 

  • Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR et al. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65: 8530–8537.

    Article  CAS  Google Scholar 

  • Reedijk M, Pinnaduwage D, Dickson BC, Mulligan AM, Zhang H, Bull SB et al. (2008). JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer. Breast Cancer Res Treat 111: 439–448.

    Article  CAS  Google Scholar 

  • Rizzo P, Miao H, D'Souza G, Osipo C, Yun J, Zhao H et al. (2008). Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res 68: 5226–5235.

    Article  CAS  Google Scholar 

  • Ronchini C, Capobianco AJ . (2001). Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 21: 5925–5934.

    Article  CAS  Google Scholar 

  • Saint Just RM, Hansson ML, Wallberg AE . (2007). A proline repeat domain in the Notch co-activator MAML1 is important for the p300-mediated acetylation of MAML1. Biochem J 404: 289–298.

    Article  Google Scholar 

  • Shen Q, Uray IP, Li Y, Krisko TI, Strecker TE, Kim HT et al. (2008). The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene 27: 366–377.

    Article  CAS  Google Scholar 

  • Song LL, Peng Y, Yun J, Rizzo P, Chaturvedi V, Weijzen S et al. (2008). Notch-1 associates with IKKalpha and regulates IKK activity in cervical cancer cells. Oncogene 27: 5833–5844.

    Article  CAS  Google Scholar 

  • Stylianou S, Clarke RB, Brennan K . (2006). Aberrant activation of notch signaling in human breast cancer. Cancer Res 66: 1517–1525.

    Article  CAS  Google Scholar 

  • Vooijs M, Schroeter EH, Pan Y, Blandford M, Kopan R . (2004). Ectodomain shedding and intramembrane cleavage of mammalian Notch proteins is not regulated through oligomerization. J Biol Chem 279: 50864–50873.

    Article  CAS  Google Scholar 

  • Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20: 2096–2109.

    Article  CAS  Google Scholar 

  • Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC et al. (2003). Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 23: 655–664.

    Article  CAS  Google Scholar 

  • Wu J, Iwata F, Grass JA, Osborne CS, Elnitski L, Fraser P et al. (2005). Molecular determinants of NOTCH4 transcription in vascular endothelium. Mol Cell Biol 25: 1458–1474.

    Article  CAS  Google Scholar 

  • Zwijsen RM, Wientjens E, Klompmaker R, van der SJ, Bernards R, Michalides RJ . (1997). CDK-independent activation of estrogen receptor by cyclin D1. Cell 88: 405–415.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant P01AG025531 (LM, BAO) and the Schmitt Fellowship Foundation (LH). We are grateful to Geraldine Weinmaster, Peter Strack and Rafi Kopan for the gift of reagents and cell lines, and to Sarah Bray for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Miele.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, L., Rizzo, P., Osipo, C. et al. Notch-1 activates estrogen receptor-α-dependent transcription via IKKα in breast cancer cells. Oncogene 29, 201–213 (2010). https://doi.org/10.1038/onc.2009.323

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.323

Keywords

This article is cited by

Search

Quick links