Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling

Abstract

Choline is an essential anabolic substrate for the synthesis of phospholipids. Choline kinase phosphorylates choline to phosphocholine that serves as a precursor for the production of phosphatidylcholine, the major phospholipid constituent of membranes and substrate for the synthesis of lipid signaling molecules. Nuclear magnetic resonance (NMR)-based metabolomic studies of human tumors have identified a marked increase in the intracellular concentration of phosphocholine relative to normal tissues. We postulated that the observed intracellular pooling of phosphocholine may be required to sustain the production of the pleiotropic lipid second messenger, phosphatidic acid. Phosphatidic acid is generated from the cleavage of phosphatidylcholine by phospholipase D2 and is a key activator of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/AKT survival signaling pathways. In this study we show that the steady-state concentration of phosphocholine is increased by the ectopic expression of oncogenic H-RasV12 in immortalized human bronchial epithelial cells. We then find that small interfering RNA (siRNA) silencing of choline kinase expression in transformed HeLa cells completely abrogates the high concentration of phosphocholine, which in turn decreases phosphatidylcholine, phosphatidic acid and signaling through the MAPK and PI3K/AKT pathways. This simultaneous reduction in survival signaling markedly decreases the anchorage-independent survival of HeLa cells in soft agar and in athymic mice. Last, we confirm the relative importance of phosphatidic acid for this pro-survival effect as phosphatidic acid supplementation fully restores MAPK signaling and partially rescues HeLa cells from choline kinase inhibition. Taken together, these data indicate that the pooling of phosphocholine in cancer cells may be required to provide a ready supply of phosphatidic acid necessary for the feed-forward amplification of cancer survival signaling pathways.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  • Ackerstaff E, Glunde K, Bhujwalla ZM . (2003). Choline phospholipid metabolism: a target in cancer cells? J Cell Biochem 90: 525–533.

    CAS  Article  PubMed  Google Scholar 

  • Al-Saffar NM, Troy H, Ramirez de Molina A, Jackson LE, Madhu B, Griffiths JR et al. (2006). Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res 66: 427–434.

    CAS  Article  PubMed  Google Scholar 

  • Aoyama C, Liao H, Ishidate K . (2004). Structure and function of choline kinase isoforms in mammalian cells. Prog Lipid Res 43: 266–281.

    CAS  Article  PubMed  Google Scholar 

  • Aoyama C, Ohtani A, Ishidate K . (2002). Expression and characterization of the active molecular forms of choline/ethanolamine kinase-alpha and -beta in mouse tissues, including carbon tetrachloride-induced liver. Biochem J 363: 777–784.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D et al. (2001). Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56: 127–155.

    CAS  Article  PubMed  Google Scholar 

  • Banez-Coronel M, de Molina AR, Rodriguez-Gonzalez A, Sarmentero J, Ramos MA, Garcia-Cabezas MA et al (2008). Choline kinase alpha depletion selectively kills tumoral cells. Curr Cancer Drug Targets 8: 709–719.

    CAS  Article  PubMed  Google Scholar 

  • Bos JL . (1989). ras oncogenes in human cancer: a review. Cancer Res 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  • Buchanan FG, McReynolds M, Couvillon A, Kam Y, Holla VR, Dubois RN et al. (2005). Requirement of phospholipase D1 activity in H-RasV12-induced transformation. Proc Natl Acad Sci USA 102: 1638–1642.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A et al. (2008). Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118: 3065–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Molina AR, Banez-Coronel M, Gutierrez R, Rodriguez-Gonzalez A, Olmeda D, Megias D et al (2004). Choline kinase activation is a critical requirement for the proliferation of primary human mammary epithelial cells and breast tumor progression. Cancer Res 64: 6732–6739.

    CAS  Article  Google Scholar 

  • Degani H, Horowitz A, Itzchak Y . (1986). Breast tumors: evaluation with P-31 MR spectroscopy. Radiology 161: 53–55.

    CAS  Article  PubMed  Google Scholar 

  • Eliyahu G, Kreizman T, Degani H . (2007). Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int J Cancer 120: 1721–1730.

    CAS  Article  PubMed  Google Scholar 

  • Exton JH . (1990). Signaling through phosphatidylcholine breakdown. J Biol Chem 265: 1–4.

    CAS  PubMed  Google Scholar 

  • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J . (2001). Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294: 1942–1945.

    CAS  Article  PubMed  Google Scholar 

  • Foster DA, Xu L . (2003). Phospholipase D in cell proliferation and cancer. Mol Cancer Res 1: 789–800.

    CAS  PubMed  Google Scholar 

  • Glunde K, Bhujwalla ZM . (2007). Choline kinase alpha in cancer prognosis and treatment. Lancet Oncol 8: 855–857.

    CAS  Article  PubMed  Google Scholar 

  • Glunde K, Jacobs MA, Bhujwalla ZM . (2006). Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev Mol Diagn 6: 821–829.

    CAS  Article  PubMed  Google Scholar 

  • Glunde K, Raman V, Mori N, Bhujwalla ZM . (2005). RNA interference-mediated choline kinase suppression in breast cancer cells induces differentiation and reduces proliferation. Cancer Res 65: 11034–11043.

    CAS  Article  PubMed  Google Scholar 

  • Grant S . (2008). Cotargeting survival signaling pathways in cancer. J Clin Invest 118: 3003–3006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  Article  PubMed  Google Scholar 

  • Hancock JF . (2007). PA promoted to manager. Nat Cell Biol 9: 615–617.

    CAS  Article  PubMed  Google Scholar 

  • Hernandez-Alcoceba R, Fernandez F, Lacal JC . (1999). in vivo antitumor activity of choline kinase inhibitors: a novel target for anticancer drug discovery. Cancer Res 59: 3112–3118.

    CAS  PubMed  Google Scholar 

  • Hernandez-Alcoceba R, Saniger L, Campos J, Nunez MC, Khaless F, Gallo MA et al. (1997). Choline kinase inhibitors as a novel approach for antiproliferative drug design. Oncogene 15: 2289–2301.

    CAS  Article  PubMed  Google Scholar 

  • Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S et al. (2008). Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15: 80–88.

    CAS  Article  PubMed  Google Scholar 

  • Ihle NT, Powis G . (2009). Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Mol Cancer Ther 8: 1–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Iorio E, Mezzanzanica D, Alberti P, Spadaro F, Ramoni C, D′Ascenzo S et al. (2005). Alterations of choline phospholipid metabolism in ovarian tumor progression. Cancer Res 65: 9369–9376.

    CAS  Article  PubMed  Google Scholar 

  • Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H et al. (2008). Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 118: 3051–3064.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, D′Souza-Schorey C, Barbieri MA, Cooper JA, Stahl PD . (1997). Uncoupling of membrane ruffling and pinocytosis during Ras signal transduction. J Biol Chem 272: 10337–10340.

    CAS  Article  PubMed  Google Scholar 

  • Luo J, Manning BD, Cantley LC . (2003). Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4: 257–262.

    CAS  Article  PubMed  Google Scholar 

  • Malito E, Sekulic N, Too WC, Konrad M, Lavie A . (2006). Elucidation of human choline kinase crystal structures in complex with the products ADP or phosphocholine. J Mol Biol 364: 136–151.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Martinelli G, Iacobucci I, Paolini S, Ottaviani E . (2008). Farnesyltransferase inhibition in hematologic malignancies: the clinical experience with tipifarnib. Clin Adv Hematol Oncol 6: 303–310.

    PubMed  Google Scholar 

  • Mazie AR, Spix JK, Block ER, Achebe HB, Klarlund JK . (2006). Epithelial cell motility is triggered by activation of the EGF receptor through phosphatidic acid signaling. J Cell Sci 119: 1645–1654.

    CAS  Article  PubMed  Google Scholar 

  • McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE et al. (2006). Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 46: 249–279.

    CAS  Article  PubMed  Google Scholar 

  • McCubrey JA, Steelman LS, Franklin RA, Abrams SL, Chappell WH, Wong EW et al. (2007). Targeting the RAF/MEK/ERK, PI3K/AKT and p53 pathways in hematopoietic drug resistance. Adv Enzyme Regul 47: 64–103.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Nozawa S, Ohno T, Banno Y, Dohjima T, Wakahara K, Fan DG et al. (2005). Inhibition of platelet-derived growth factor-induced cell growth signaling by a short interfering RNA for EWS-Fli1 via down-regulation of phospholipase D2 in Ewing sarcoma cells. J Biol Chem 280: 27544–27551.

    CAS  Article  PubMed  Google Scholar 

  • Omerovic J, Hammond DE, Clague MJ, Prior IA . (2008). Ras isoform abundance and signalling in human cancer cell lines. Oncogene 27: 2754–2762.

    CAS  Article  PubMed  Google Scholar 

  • Onodera K, Okubo A, Yasumoto K, Suzuki T, Kimura G, Nomoto K . (1986). 31P nuclear magnetic resonance analysis of lung cancer: the perchloric acid extract spectrum. Jpn J Cancer Res 77: 1201–1206.

    CAS  PubMed  Google Scholar 

  • Pal SK, Figlin RA, Reckamp KL . (2008). The role of targeting mammalian target of rapamycin in lung cancer. Clin Lung Cancer 9: 340–345.

    CAS  Article  PubMed  Google Scholar 

  • Ramirez de Molina A, Gallego-Ortega D, Sarmentero J, Banez-Coronel M, Martin-Cantalejo Y, Lacal JC . (2005). Choline kinase is a novel oncogene that potentiates RhoA-induced carcinogenesis. Cancer Res 65: 5647–5653.

    CAS  Article  PubMed  Google Scholar 

  • Ramirez de Molina A, Penalva V, Lucas L, Lacal JC . (2002a). Regulation of choline kinase activity by Ras proteins involves Ral-GDS and PI3K. Oncogene 21: 937–946.

    CAS  Article  PubMed  Google Scholar 

  • Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R, Martinez-Pineiro L, Sanchez J, Bonilla F et al. (2002b). Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun 296: 580–583.

    CAS  Article  PubMed  Google Scholar 

  • Ramirez de Molina A, Rodriguez-Gonzalez A, Lacal JC . (2004). From Ras signalling to ChoK inhibitors: a further advance in anticancer drug design. Cancer Lett 206: 137–148.

    CAS  Article  PubMed  Google Scholar 

  • Ramirez de Molina A, Sarmentero-Estrada J, Belda-Iniesta C, Taron M, Ramirez de Molina V, Cejas P et al. (2007). Expression of choline kinase alpha to predict outcome in patients with early-stage non-small-cell lung cancer: a retrospective study. Lancet Oncol 8: 889–897.

    CAS  Article  PubMed  Google Scholar 

  • Rizzo M, Romero G . (2002). Pharmacological importance of phospholipase D and phosphatidic acid in the regulation of the mitogen-activated protein kinase cascade. Pharmacol Ther 94: 35–50.

    CAS  Article  PubMed  Google Scholar 

  • Rizzo MA, Shome K, Vasudevan C, Stolz DB, Sung TC, Frohman MA et al. (1999). Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent raf-1 translocation to the plasma membrane and the activation of the mitogen-activated protein kinase pathway. J Biol Chem 274: 1131–1139.

    CAS  Article  PubMed  Google Scholar 

  • Rizzo MA, Shome K, Watkins SC, Romero G . (2000). The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J Biol Chem 275: 23911–23918.

    CAS  Article  PubMed  Google Scholar 

  • Rodriguez-Gonzalez A, de Molina AR, Fernandez F, Ramos MA, Nunez Mdel C, Campos J et al. (2003a). Inhibition of choline kinase as a specific cytotoxic strategy in oncogene-transformed cells. Oncogene 22: 8803–8812.

    CAS  Article  PubMed  Google Scholar 

  • Rodriguez-Gonzalez A, Ramirez de Molina A, Fernandez F, Ramos MA, del Carmen Nunez M, Campos J et al. (2003b). Inhibition of choline kinase as a specific cytotoxic strategy in oncogene-transformed cells. Oncogene 22: 8803–8812.

    CAS  Article  PubMed  Google Scholar 

  • Sebolt-Leopold JS, Herrera R . (2004). Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4: 937–947.

    CAS  Article  PubMed  Google Scholar 

  • Soejima K, Fang W, Rollins BJ . (2003). DNA methyltransferase 3b contributes to oncogenic transformation induced by SV40T antigen and activated Ras. Oncogene 22: 4723–4733.

    CAS  Article  PubMed  Google Scholar 

  • Telang S, Lane AN, Nelson KK, Arumugam S, Chesney J . (2007). The oncoprotein H-RasV12 increases mitochondrial metabolism. Mol Cancer 6: 77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW et al. (2006). Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene 25: 7225–7234.

    CAS  Article  PubMed  Google Scholar 

  • Thornburg JM, Nelson KK, Clem BF, Lane AN, Arumugam S, Simmons A et al. (2008). Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res 10: R84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA . (2009). Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid—competition with rapamycin. Mol Cell Biol 29: 1411–1420.

    CAS  Article  PubMed  Google Scholar 

  • Vieira AV, Lamaze C, Schmid SL . (1996). Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274: 2086–2089.

    CAS  Article  PubMed  Google Scholar 

  • Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M . (2008). Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7: 3129–3140.

    CAS  Article  PubMed  Google Scholar 

  • Yuan TL, Cantley LC . (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene 27: 5497–5510.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Du G, Skowronek K, Frohman MA, Bar-Sagi D . (2007). Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat Cell Biol 9: 706–712.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful discussions with Drs Binks Wattenberg, Mary Roth and Otto Grubraw. This work was supported by the James Graham Brown Cancer Center and by the following grants: NIH 1 R01 CA11642801 (JC) and the Kentucky Lung Cancer Research Program (JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Chesney.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yalcin, A., Clem, B., Makoni, S. et al. Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling. Oncogene 29, 139–149 (2010). https://doi.org/10.1038/onc.2009.317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.317

Keywords

  • ras
  • phosphatidic acid
  • phosphocholine

Further reading

Search

Quick links