Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The role of proto-oncogene Fra-1 in remodeling the tumor microenvironment in support of breast tumor cell invasion and progression

Abstract

A growing body of evidence indicates that interactions between neoplastic cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) are crucial in promoting tumor cell invasion and progression. Macrophages have an ambiguous role in these processes as this M1 phenotype correlates with tumoricidal capacity, whereas TAMs of M2 phenotype exert tumor-promoting effects. In this study, we provide evidence that interactions between mouse breast tumor cells and TAMs remodel the TME, leading to the upregulation of Fra-1, a member of the FOS family of transcription factor. In turn, this proto-oncogene initiates activation of the IL-6/JAK/Stat3 signaling pathway. This creates a malignant switch in breast tumor cells, leading to increased release of proangiogenic factors MMP-9, vascular endothelial growth factor and transforming growth factor-β from tumor cells and intensified invasion and progression of breast cancer. Proof of the concept for the crucial role played by transcription factor Fra-1 in regulating these processes was established by specific knockdown of Fra-1 with small interfering RNA, which resulted in a marked suppression of tumor cell invasion, angiogenesis and metastasis in a mouse breast cancer model. Such a strategy could eventually lead to future efficacious treatments of metastatic breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adiseshaiah P, Peddakama S, Zhang Q, Kalvakolanu DV, Reddy SP . (2005). Mitogen regulated induction of FRA-1 proto-oncogene is controlled by the transcription factors binding to both serum and TPA response elements. Oncogene 24: 4193–4205.

    Article  CAS  PubMed  Google Scholar 

  • Allavena P, Sica A, Solinas G, Porta C, Mantovani A . (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66: 1–9.

    Article  PubMed  Google Scholar 

  • Asschert JG, de Vries EG, De JS, Withoff S, Vellenga E . (1999). Differential regulation of IL-6 promoter activity in a human ovarian-tumor cell line transfected with various p53 mutants: involvement of AP-1. Int J Cancer 81: 236–242.

    Article  CAS  PubMed  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A . (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7: 211–217.

    Article  CAS  PubMed  Google Scholar 

  • Bronte V, Zanovello P . (2005). Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5: 641–654.

    Article  CAS  PubMed  Google Scholar 

  • Condeelis J, Pollard JW . (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124: 263–266.

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Tinkle CL, Hanahan D, Werb Z . (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103: 481–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darnell Jr JE . (2002). Transcription factors as targets for cancer therapy. Nat Rev Cancer 2: 740–749.

    Article  CAS  PubMed  Google Scholar 

  • Faggioli L, Costanzo C, Donadelli M, Palmieri M . (2004). Activation of the Interleukin-6 promoter by a dominant negative mutant of c-Jun. Biochim Biophys Acta 1692: 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Fraser CC, Chen BP, Webb S, van RN, Kraal G . (1995). Circulation of human hematopoietic cells in severe combined immunodeficient mice after Cl2MDP-liposome-mediated macrophage depletion. Blood 86: 183–192.

    CAS  PubMed  Google Scholar 

  • Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL et al. (2007). Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117: 3846–3856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP . (2005). Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65: 3437–3446.

    Article  CAS  PubMed  Google Scholar 

  • Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C . (2004). Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25: 1543–1549.

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka S, Watanabe A, Aburatani H, Maru Y . (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8: 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  • Hodge DR, Hurt EM, Farrar WL . (2005). The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 41: 2502–2512.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen E, Iversen PO, van RN, Benestad HB . (2002). Macrophage-dependent regulation of neutrophil mobilization and chemotaxis during development of sterile peritonitis in the rat. Eur J Haematol 69: 284–296.

    Article  CAS  PubMed  Google Scholar 

  • Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S et al. (2005). Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11: 1314–1321.

    Article  CAS  PubMed  Google Scholar 

  • Kortylewski M, Yu H . (2008). Role of Stat3 in suppressing anti-tumor immunity. Curr Opin Immunol 20: 228–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leek RD, Harris AL . (2002). Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 7: 177–189.

    Article  PubMed  Google Scholar 

  • Lewen S, Zhou H, Hu HD, Cheng T, Markowitz D, Reisfeld RA et al. (2008). A Legumain-based minigene vaccine targets the tumor stroma and suppresses breast cancer growth and angiogenesis. Cancer Immunol Immunother 57: 507–515.

    Article  CAS  PubMed  Google Scholar 

  • Lewis CE, Pollard JW . (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Res 66: 605–612.

    Article  CAS  PubMed  Google Scholar 

  • Lin EY, Li JF, Bricard G, Wang W, Deng Y, Sellers R et al. (2007). Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol 1: 288–302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin EY, Nguyen AV, Russell RG, Pollard JW . (2001). Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193: 727–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin EY, Pollard JW . (2007). Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res 67: 5064–5066.

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C et al. (2006). Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116: 2132–2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Schioppa T, Porta C, Allavena P, Sica A . (2006). Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25: 315–322.

    Article  PubMed  Google Scholar 

  • Martinez FO, Sica A, Mantovani A, Locati M . (2008). Macrophage activation and polarization. Front Biosci 13: 453–461.

    Article  CAS  PubMed  Google Scholar 

  • Milde-Langosch K . (2005). The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41: 2449–2461.

    Article  CAS  PubMed  Google Scholar 

  • Philips A, Teyssier C, Galtier F, Rivier-Covas C, Rey JM, Rochefort H et al. (1998). FRA-1 expression level modulates regulation of activator protein-1 activity by estradiol in breast cancer cells. Mol Endocrinol 12: 973–985.

    Article  CAS  PubMed  Google Scholar 

  • Pollard JW . (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Sica A, Schioppa T, Mantovani A, Allavena P . (2006). Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42: 717–727.

    Article  CAS  PubMed  Google Scholar 

  • van RN . (1989). The liposome-mediated macrophage ‘suicide’ technique. J Immunol Methods 124: 1–6.

    Article  Google Scholar 

  • van RN, Sanders A . (1994). Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174: 83–93.

    Article  Google Scholar 

  • Yu H, Kortylewski M, Pardoll D . (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7: 41–51.

    Article  CAS  PubMed  Google Scholar 

  • Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A et al. (2001). Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 61: 5168–5178.

    CAS  PubMed  Google Scholar 

  • Zerbini LF, Wang Y, Cho JY, Libermann TA . (2003). Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res 63: 2206–2215.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K Cairns for editorial assistance. This work was supported by grants from the National Science Foundation of China (NSFC): Grant 30672389 (to RX), NSFC 973 program Grant 2007CB914804 (to RX), and NSFC 863 program Grant 2007AA021010 (to RX), Grant No. 30671983 from The National Natural Science Foundation of China (to YL); grant from NIH CA 115751 (to RAR); and Grant SFP 1645 from the EMD Lexigen Research Center (to RAR). This is The Scripps Research Institute's manuscript number 19572-IMM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y P Luo or R A Reisfeld.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Zhou, H., Krueger, J. et al. The role of proto-oncogene Fra-1 in remodeling the tumor microenvironment in support of breast tumor cell invasion and progression. Oncogene 29, 662–673 (2010). https://doi.org/10.1038/onc.2009.308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.308

Keywords

This article is cited by

Search

Quick links