Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells

Abstract

We have previously shown that protein kinase D1 (PKD1), charter member of PKD protein family, is downregulated in advanced prostate cancer (PC) and influences androgen receptor (AR) function in PC cells. Other independent studies showed that serine 82 residue in heat shock protein 27 (Hsp27) undergoes substrate phosphorylation by PKD1 and is associated with nuclear transport of AR resulting in increased AR transcriptional activity. In this study, we show that PKD1 interacts and phosphorylates Hsp27 at Ser82 in PC cells, which is mediated by p38-dependent mitogen-activated protein kinase pathway and is necessary for PKD1 repression of AR transcriptional activity and androgen-dependent proliferation of PC cells. The study provides first in vivo evidence that Hsp27 is a mediator of repression of AR function by PKD1 in PC cells, thereby linking the data in the published literature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Belka C, Ahlers A, Sott C, Gaestel M, Herrmann F, Brach MA . (1995). Interleukin (IL)-6 signaling leads to phosphorylation of the small heat shock protein (Hsp)27 through activation of the MAP kinase and MAPKAP kinase 2 pathway in monocytes and monocytic leukemia cells. Leukemia 9: 288–294.

    CAS  PubMed  Google Scholar 

  • Carraway R, Leeman SE . (1976). Characterization of radioimmunoassayable neurotensin in the rat. Its differential distribution in the central nervous system, small intestine, and stomach. J Biol Chem 251: 7045–7052.

    CAS  PubMed  Google Scholar 

  • Carraway RE, Hassan S . (2007). Neurotensin receptor binding and neurotensin-induced growth signaling in prostate cancer PC3 cells are sensitive to metabolic stress. Regul Pept 141: 140–153.

    Article  CAS  PubMed  Google Scholar 

  • Cornford PA, Dodson AR, Parsons KF, Desmond AD, Woolfenden A, Fordham M et al. (2000). Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 60: 7099–7105.

    CAS  PubMed  Google Scholar 

  • Doppler H, Storz P, Li J, Comb MJ, Toker A . (2005). A phosphorylation state-specific antibody recognizes Hsp27, a novel substrate of protein kinase D. J Biol Chem 280: 15013–15019.

    Article  PubMed  Google Scholar 

  • Du C, Ge B, Liu Z, Fu K, Chan WC, McKeithan TW . (2006). PCR-based generation of shRNA libraries from cDNAs. BMC Biotechnol 6: 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Du C, Jaggi M, Zhang C, Balaji KC . (2009). Protein kinase D1-mediated phosphorylation and subcellular localization of beta-catenin. Cancer Res 69: 1117–1124.

    Article  CAS  PubMed  Google Scholar 

  • Dudich IV, Zav′yalov VP, Pfeil W, Gaestel M, Zav′yalova GA, Denesyuk AI et al. (1995). Dimer structure as a minimum cooperative subunit of small heat-shock proteins. Biochim Biophys Acta 1253: 163–168.

    Article  PubMed  Google Scholar 

  • Edwards J, Bartlett JM . (2005). The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 2: androgen-receptor cofactors and bypass pathways. BJU Int 95: 1327–1335.

    Article  CAS  PubMed  Google Scholar 

  • Evans IM, Britton G, Zachary IC . (2008). Vascular endothelial growth factor induces heat shock protein (HSP) 27 serine 82 phosphorylation and endothelial tubulogenesis via protein kinase D and independent of p38 kinase. Cell Signal 20: 1375–1384.

    Article  CAS  PubMed  Google Scholar 

  • Fanelli MA, Montt-Guevara M, Diblasi AM, Gago FE, Tello O, Cuello-Carrion FD et al. (2008). P-cadherin and beta-catenin are useful prognostic markers in breast cancer patients; beta-catenin interacts with heat shock protein Hsp27. Cell Stress Chaperones 13: 207–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geum D, Son GH, Kim K . (2002). Phosphorylation-dependent cellular localization and thermoprotective role of heat shock protein 25 in hippocampal progenitor cells. J Biol Chem 277: 19913–19921.

    Article  CAS  PubMed  Google Scholar 

  • Gomase VS, Tagore S . (2008). Kinomics. Curr Drug Metab 9: 255–258.

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Buchner J . (2002). Chaperone function of sHsps. Prog Mol Subcell Biol 28: 37–59.

    Article  CAS  PubMed  Google Scholar 

  • Jaggi M, Chauhan SC, Du C, Balaji KC . (2008). Bryostatin 1 modulates beta-catenin subcellular localization and transcription activity through protein kinase D1 activation. Mol Cancer Ther 7: 2703–2712.

    Article  CAS  PubMed  Google Scholar 

  • Jaggi M, Du C, Zhang W, Balaji KC . (2007). Protein kinase D1: a protein of emerging translational interest. Front Biosci 12: 3757–3767.

    Article  CAS  PubMed  Google Scholar 

  • Jaggi M, Rao PS, Smith DJ, Hemstreet GP, Balaji KC . (2003). Protein kinase C mu is down-regulated in androgen-independent prostate cancer. Biochem Biophys Res Commun 307: 254–260.

    Article  CAS  PubMed  Google Scholar 

  • Jaggi M, Rao PS, Smith DJ, Wheelock MJ, Johnson KR, Hemstreet GP et al. (2005). E-cadherin phosphorylation by protein kinase D1/protein kinase C{mu} is associated with altered cellular aggregation and motility in prostate cancer. Cancer Res 65: 483–492.

    CAS  PubMed  Google Scholar 

  • Ku GY, Ilson DH, Schwartz LH, Capanu M, O′Reilly E, Shah MA et al. (2008). Phase II trial of sequential paclitaxel and 1 h infusion of bryostatin-1 in patients with advanced esophageal cancer. Cancer Chemother Pharmacol 62: 875–880.

    Article  CAS  PubMed  Google Scholar 

  • Lee LF, Guan J, Qiu Y, Kung HJ . (2001). Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol Cell Biol 21: 8385–8397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chen LA, Townsend Jr CM, Evers BM . (2008). PKD1, PKD2, and their substrate Kidins220 regulate neurotensin secretion in the BON human endocrine cell line. J Biol Chem 283: 2614–2621.

    Article  CAS  PubMed  Google Scholar 

  • Maizels ET, Peters CA, Kline M, Cutler Jr RE, Shanmugam M, Hunzicker-Dunn M . (1998). Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C. Biochem J 332 (Pt 3): 703–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mak P, Jaggi M, Syed V, Chauhan SC, Hassan S, Biswas H et al. (2008). Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells. Biochem Biophys Res Commun 373: 618–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S . (2002). The protein kinase complement of the human genome. Science 298: 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  • Martinez V, Tache Y . (2000). Bombesin and the brain-gut axis. Peptides 21: 1617–1625.

    Article  CAS  PubMed  Google Scholar 

  • Moody TW, Chan D, Fahrenkrug J, Jensen RT . (2003). Neuropeptides as autocrine growth factors in cancer cells. Curr Pharm Des 9: 495–509.

    Article  CAS  PubMed  Google Scholar 

  • Mosca A, Berruti A, Russo L, Torta M, Dogliotti L . (2005). The neuroendocrine phenotype in prostate cancer: basic and clinical aspects. J Endocrinol Invest 28: 141–145.

    CAS  PubMed  Google Scholar 

  • Neckers L . (2003). Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. Curr Med Chem 10: 733–739.

    Article  CAS  PubMed  Google Scholar 

  • Parcellier A, Schmitt E, Gurbuxani S, Seigneurin-Berny D, Pance A, Chantome A et al. (2003). HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 23: 5790–5802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JD, Smith MR, Feldman EJ, Cragg L, Millenson MM, Roboz GJ et al. (2006). Phase I study of bryostatin 1 and fludarabine in patients with chronic lymphocytic leukemia and indolent (non-Hodgkin′s) lymphoma. Clin Cancer Res 12: 5809–5816.

    Article  CAS  PubMed  Google Scholar 

  • Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C et al. (2005). Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res 65: 11083–11093.

    Article  CAS  PubMed  Google Scholar 

  • Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L et al. (2006). Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int 98: 1082–1089.

    Article  CAS  PubMed  Google Scholar 

  • Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L et al. (2004). Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 64: 6595–6602.

    Article  CAS  PubMed  Google Scholar 

  • Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D et al. (1994). A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78: 1027–1037.

    Article  CAS  PubMed  Google Scholar 

  • Rozengurt E, Rey O, Waldron RT . (2005). Protein kinase D signaling. J Biol Chem 280: 13205–13208.

    Article  CAS  PubMed  Google Scholar 

  • Rybin VO, Guo J, Steinberg SF . (2009). Protein kinase D1 autophosphorylation via distinct mechanisms at Ser744/Ser748 and Ser916. J Biol Chem 284: 2332–2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simental JA, Sar M, Lane MV, French FS, Wilson EM . (1991). Transcriptional activation and nuclear targeting signals of the human androgen receptor. J Biol Chem 266: 510–518.

    CAS  PubMed  Google Scholar 

  • So A, Hadaschik B, Sowery R, Gleave M . (2007). The role of stress proteins in prostate cancer. Curr Genomics 8: 252–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M . (1992). Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313: 307–313.

    Article  CAS  PubMed  Google Scholar 

  • Syed V, Mak P, Du C, Balaji KC . (2008). Beta-catenin mediates alteration in cell proliferation, motility and invasion of prostate cancer cells by differential expression of E-cadherin and protein kinase D1. J Cell Biochem 104: 82–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde AM, Sinnett-Smith J, Van Lint J, Rozengurt E . (1994). Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc Natl Acad Sci USA 91: 8572–8576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Wang J, Sadar MD . (2008). Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer. Cancer Res 68: 9918–9927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QJ . (2006). PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci 27: 317–323.

    Article  CAS  PubMed  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL . (1999). Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180.

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Rozengurt E . (2008). PKD, PKD2, and p38 MAPK mediate Hsp27 serine-82 phosphorylation induced by neurotensin in pancreatic cancer PANC-1 cells. J Cell Biochem 103: 648–662.

    Article  CAS  PubMed  Google Scholar 

  • Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P et al. (2007). Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 67: 10455–10465.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr FJ Johannes, Fraunhofer Institute for Interfacial Engineering, Stuttgart, Germany for providing the PKD1 expression vector. This study was supported by an institutional grant from the Department of Surgery, University of Massachusetts Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K C Balaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, S., Biswas, M., Zhang, C. et al. Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells. Oncogene 28, 4386–4396 (2009). https://doi.org/10.1038/onc.2009.291

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.291

Keywords

This article is cited by

Search

Quick links