Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue

Abstract

SNAI1, ZEB1, E-cadherin (CDH1), and vitamin D receptor (VDR) genes regulate the epithelial–mesenchymal transition (EMT) that initiates the invasion process of many tumor cells. We hypothesized that this process could also affect the behavior of normal cells adjacent to the tumor. To verify this hypothesis, the expression level of these genes was determined by quantitative RT–PCR in tumor, normal adjacent, and normal distant tissues from 32 colorectal cancer (CC) patients. In addition, we extended the study to human HaCaT normal keratinocytes and SW480-ADH colon cancer cells co-cultured with SW480-ADH cells overexpressing the mouse Snai1 gene. Of 18 CC cases with SNAI1 expression in tumor tissue, five also had SNAI1 in normal adjacent tissue (NAT). Expression of SNAI1 in tumor tissue correlated with downregulation of CDH1 and VDR genes in both tumor (P=0.047 and P=0.014, respectively) and NAT lacking SNAI1 expression (P=0.054 and P=0.003). ZEB1 expression was directly related to VDR expression in tumor tissue (r=0.39; P=0.027) and inversely to CDH1 in NAT (r=−0.46; P=0.010). CDH1 and VDR were also downregulated in SW480-ADH and MaCaT cells, respectively, when they were co-cultured with Snai1-expressing cells. Furthermore, cytokine analysis showed differences in the conditioned media obtained from the two cell types. These results indicate that histologically normal tissue adjacent to tumor tissue expressing the EMT-inducing gene SNAI1 shows alterations in the expression of epithelial differentiation genes such as CDH1 and VDR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AI:

allele imbalance

CC:

colorectal cancer

EMT:

epithelial–mesenchymal transition

LOH:

loss of heterozygosity

N:

normal

NAT:

normal adjacent tissue

T:

tumor

VDR:

vitamin D receptor

References

  • Aboseif S, El-Sakka A, Young P, Cunha G . (1999). Mesenchymal reprogramming of adult human epithelial differentiation. Differentiation 65: 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  • Baulida J, Batlle E, Garcia De HA . (1999). Adenomatous polyposis coli protein (APC)-independent regulation of beta-catenin/Tcf-4 mediated transcription in intestinal cells. Biochem J 344 (Pt 2): 565–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco MJ, Barrallo-Gimeno A, Acloque H, Reyes AE, Tada M, Allende ML et al. (2007). Snail1a and Snail1b cooperate in the anterior migration of the axial mesendoderm in the zebrafish embryo. Development 134: 4073–4081.

    Article  CAS  PubMed  Google Scholar 

  • Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA et al. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 98: 10356–10361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown LF, Guidi AJ, Schnitt SJ, Van De WL, Iruela-Arispe ML, Yeo TK et al. (1999). Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res 5: 1041–1056.

    CAS  PubMed  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Condeelis J, Segall JE . (2003). Intravital imaging of cell movement in tumours. Nat Rev Cancer 3: 921–930.

    Article  CAS  PubMed  Google Scholar 

  • Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS . (1996). Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274: 2057–2059.

    Article  CAS  PubMed  Google Scholar 

  • Forsti A, Louhelainen J, Soderberg M, Wijkstrom H, Hemminki K . (2001). Loss of heterozygosity in tumour-adjacent normal tissue of breast and bladder cancer. Eur J Cancer 37: 1372–1380.

    Article  CAS  PubMed  Google Scholar 

  • Franci C, Takkunen M, Dave N, Alameda F, Gomez S, Rodriguez R et al. (2006). Expression of Snail protein in tumor-stroma interface. Oncogene 25: 5134–5144.

    Article  CAS  PubMed  Google Scholar 

  • Grooteclaes ML, Frisch SM . (2000). Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19: 3823–3828.

    Article  CAS  PubMed  Google Scholar 

  • Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E et al. (2002). Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 277: 39209–39216.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Herzig M, Christofori G . (2002). Recent advances in cancer research: mouse models of tumorigenesis. Biochim Biophys Acta 1602: 97–113.

    CAS  PubMed  Google Scholar 

  • Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D et al. (2008). Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13: 394–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurose K, Hoshaw-Woodard S, Adeyinka A, Lemeshow S, Watson PH, Eng C . (2001). Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumour-microenvironment interactions. Hum Mol Genet 10: 1907–1913.

    Article  CAS  PubMed  Google Scholar 

  • Lakhani SR, Chaggar R, Davies S, Jones C, Collins N, Odel C et al. (1999). Genetic alterations in ‘normal’ luminal and myoepithelial cells of the breast. J Pathol 189: 496–503.

    Article  CAS  PubMed  Google Scholar 

  • Larson PS, de las MA, Bennett SR, Cupples LA, Rosenberg CL . (2002). Loss of heterozygosity or allele imbalance in histologically normal breast epithelium is distinct from loss of heterozygosity or allele imbalance in co-existing carcinomas. Am J Pathol 161: 283–290.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larson PS, de las MA, Cupples LA, Huang K, Rosenberg CL . (1998). Genetically abnormal clones in histologically normal breast tissue. Am J Pathol 152: 1591–1598.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarova DL, Bordonaro M, Sartorelli AC . (2001). Transcriptional regulation of the vitamin D(3) receptor gene by ZEB. Cell Growth Differ 12: 319–326.

    CAS  PubMed  Google Scholar 

  • Li Y, Liu W, Hayward SW, Cunha GR, Baskin LS . (2000). Plasticity of the urothelial phenotype: effects of gastro-intestinal mesenchyme/stroma and implications for urinary tract reconstruction. Differentiation 66: 126–135.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Moore DH, Meng ZH, Ljung BM, Gray JW, Dairkee SH . (2002). Increased risk of local recurrence is associated with allelic loss in normal lobules of breast cancer patients. Cancer Res 62: 1000–1003.

    CAS  PubMed  Google Scholar 

  • Liotta LA, Steeg PS, Stetler-Stevenson WG . (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–336.

    Article  CAS  PubMed  Google Scholar 

  • Locascio A, Vega S, de Frutos CA, Manzanares M, Nieto MA . (2002). Biological potential of a functional human SNAIL retrogene. J Biol Chem 277: 38803–38809.

    Article  CAS  PubMed  Google Scholar 

  • Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ . (1997). Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139: 1861–1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menke A, Philippi C, Vogelmann R, Seidel B, Lutz MP, Adler G et al. (2001). Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res 61: 3508–3517.

    CAS  PubMed  Google Scholar 

  • Nieto MA . (2002). The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3: 155–166.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson E, Skinner MK . (2001). Cellular interactions that control primordial follicle development and folliculogenesis. J Soc Gynecol Investig 8: S17–S20.

    Article  CAS  PubMed  Google Scholar 

  • Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR . (1999). Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59: 5002–5011.

    CAS  PubMed  Google Scholar 

  • Oto M, Miyake S, Yuasa Y . (1993). Optimization of nonradioisotopic single strand conformation polymorphism analysis with a conventional minislab gel electrophoresis apparatus. Anal Biochem 213: 19–22.

    Article  CAS  PubMed  Google Scholar 

  • Palmer HG, Gonzalez-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 154: 369–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer HG, Larriba MJ, Garcia JM, Ordonez-Moran P, Pena C, Peiro S et al. (2004). The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nat Med 10: 917–919.

    Article  CAS  PubMed  Google Scholar 

  • Park CC, Bissell MJ, Barcellos-Hoff MH . (2000). The influence of the microenvironment on the malignant phenotype. Mol Med Today 6: 324–329.

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    Article  CAS  PubMed  Google Scholar 

  • Pena C, Garcia JM, Garcia V, Silva J, Dominguez G, Rodriguez R et al. (2006). The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon carcinomas. Int J Cancer 119: 2098–2104.

    Article  CAS  PubMed  Google Scholar 

  • Pena C, Garcia JM, Silva J, Garcia V, Rodriguez R, Alonso I et al. (2005). E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet 14: 3361–3370.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Moreno M, Jamora C, Fuchs E . (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell 112: 535–548.

    Article  CAS  PubMed  Google Scholar 

  • Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G . (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392: 190–193.

    Article  CAS  PubMed  Google Scholar 

  • Postigo AA, Depp JL, Taylor JJ, Kroll KL . (2003). Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J 22: 2453–2462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren ZP, Hedrum A, Ponten F, Nister M, Ahmadian A, Lundeberg J et al. (1996). Human epidermal cancer and accompanying precursors have identical p53 mutations different from p53 mutations in adjacent areas of clonally expanded non-neoplastic keratinocytes. Oncogene 12: 765–773.

    CAS  PubMed  Google Scholar 

  • Sahai E, Marshall CJ . (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5: 711–719.

    Article  CAS  PubMed  Google Scholar 

  • Sozzi G, Miozzo M, Tagliabue E, Calderone C, Lombardi L, Pilotti S et al. (1991). Cytogenetic abnormalities and overexpression of receptors for growth factors in normal bronchial epithelium and tumor samples of lung cancer patients. Cancer Res 51: 400–404.

    CAS  PubMed  Google Scholar 

  • Tan C, Costello P, Sanghera J, Dominguez D, Baulida J, De Herreros AG et al. (2001). Inhibition of integrin linked kinase (ILK) suppresses beta-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC−/− human colon carcinoma cells. Oncogene 20: 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Tomita N, Jiang W, Hibshoosh H, Warburton D, Kahn SM, Weinstein IB . (1992). Isolation and characterization of a highly malignant variant of the SW480 human colon cancer cell line. Cancer Res 52: 6840–6847.

    CAS  PubMed  Google Scholar 

  • Vleminckx K, Vakaet Jr L, Mareel M, Fiers W, van RF . (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–119.

    Article  CAS  PubMed  Google Scholar 

  • Waridel F, Estreicher A, Bron L, Flaman JM, Fontolliet C, Monnier P et al. (1997). Field cancerisation and polyclonal p53 mutation in the upper aero-digestive tract. Oncogene 14: 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Werb Z . (1997). ECM and cell surface proteolysis: regulating cellular ecology. Cell 91: 439–442.

    Article  CAS  PubMed  Google Scholar 

  • Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI et al. (2003). Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160: 267–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Keightley SY, Leung-Hagesteijn C, Radeva G, Coppolino M, Goicoechea S et al. (1998). Integrin-linked protein kinase regulates fibronectin matrix assembly, E-cadherin expression, and tumorigenicity. J Biol Chem 273: 528–536.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Eaude for help with the English paper. This study was supported by the grants SAF2007-60431, CAM: S-GEN/0266/2006, ISCIII-RETIC RD06/0020 and /0009, and a grant from the Accion Transversal del Cancer (ISCIII).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Bonilla.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, C., García, J., Larriba, M. et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene 28, 4375–4385 (2009). https://doi.org/10.1038/onc.2009.285

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.285

Keywords

This article is cited by

Search

Quick links