Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hsp70 molecular chaperones are required to support p53 tumor suppressor activity under stress conditions

Abstract

p53 as an unstable protein in vitro likely requires stabilizing factors to act as a tumor suppressor in vivo. Here, we show that in human cells transfected with wild-type (WT) p53, Hsp90 and Hsp70 molecular chaperones maintain the p53 native conformation under heat-shock conditions (42 °C) as well as assist p53 refolding at 37 °C, during the recovery from heat shock. We also show that the interaction of WT p53 with WAF1 promoter in cells is sensitive to Hsp70 and Hsp90 inhibition already at 37 °C and further decreased on heat shock. The influence of chaperones on p53 binding to the WAF1 promoter sequence has been confirmed in vitro, using highly purified proteins. Hsp90 stabilizes the binding of p53 to the promoter sequence at 37 °C, whereas under heat-shock conditions the requirement for the Hsp70-Hsp40 system and its cooperation with Hsp90 increases. Hop co-chaperone additionally stimulates these reactions. Interestingly, the combined Hsp90 and Hsp70-Hsp40 allow for a limited in vitro restoration of the DNA-binding activity by the p53 oncogenic variant R249S and affect its conformation in cells. Our results indicate for the first time that, especially under stress conditions, not only Hsp90 but also Hsp70 is required for the chaperoning of WT and R249S p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Agashe VR, Hartl FU . (2000). Roles of molecular chaperones in cytoplasmic protein folding. Semin Cell Dev Biol 11: 15–25.

    Article  CAS  Google Scholar 

  • Arlander SJ, Felts SJ, Wagner JM, Stensgard B, Toft DO, Karnitz LM . (2006). Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem 281: 2989–2998.

    Article  CAS  Google Scholar 

  • Bell S, Klein C, Muller L, Hansen S, Buchner J . (2002). p53 contains large unstructured regions in its native state. J Mol Biol 322: 917–927.

    Article  CAS  Google Scholar 

  • Bullock AN, Henckel J, Fersht AR . (2000). Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene 19: 1245–1256.

    Article  CAS  Google Scholar 

  • Butler JS, Loh SN . (2006). Folding and misfolding mechanisms of the p53 DNA binding domain at physiological temperature. Protein Sci 15: 2457–2465.

    Article  CAS  Google Scholar 

  • Canadillas JM, Tidow H, Freund SM, Rutherford TJ, Ang HC, Fersht AR . (2006). Solution structure of p53 core domain: structural basis for its instability. Proc Natl Acad Sci USA 103: 2109–2114.

    Article  Google Scholar 

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations. Science 265: 346–355.

    Article  CAS  Google Scholar 

  • Daugaard M, Rohde M, Jaattela M . (2007). The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 581: 3702–3710.

    Article  CAS  Google Scholar 

  • Dearth LR, Qian H, Wang T, Baroni TE, Zeng J, Chen SW et al. (2007). Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 28: 289–298.

    Article  CAS  Google Scholar 

  • Fourie AM, Hupp TR, Lane DP, Sang BC, Barbosa MS, Sambrook JF et al. (1997). HSP70 binding sites in the tumor suppressor protein p53. J Biol Chem 272: 19471–19479.

    Article  CAS  Google Scholar 

  • Freeman BC, Morimoto RI . (1996). The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J 15: 2969–2979.

    Article  CAS  Google Scholar 

  • Friedler A, DeDecker BS, Freund SM, Blair C, Rudiger S, Fersht AR . (2004). Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for ‘mutant conformation’. J Mol Biol 336: 187–196.

    Article  CAS  Google Scholar 

  • Hansen S, Hupp TR, Lane DP . (1996). Allosteric regulation of the thermostability and DNA binding activity of human p53 by specific interacting proteins. CRC Cell Transformation Group. J Biol Chem 271: 3917–3924.

    Article  CAS  Google Scholar 

  • Hernandez MP, Sullivan WP, Toft DO . (2002). The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J Biol Chem 277: 38294–38304.

    Article  CAS  Google Scholar 

  • Hu J, Flores D, Toft D, Wang X, Nguyen D . (2004). Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol 78: 13122–13131.

    Article  CAS  Google Scholar 

  • Kaeser MD, Iggo RD . (2002). Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci USA 99: 95–100.

    Article  CAS  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC et al. (2003). A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425: 407–410.

    Article  CAS  Google Scholar 

  • King FW, Wawrzynow A, Hohfeld J, Zylicz M . (2001). Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. EMBO J 20: 6297–6305.

    Article  CAS  Google Scholar 

  • Klucken J, Shin Y, Hyman BT, McLean PJ . (2004). A single amino acid substitution differentiates Hsp70-dependent effects on alpha-synuclein degradation and toxicity. Biochem Biophys Res Commun 325: 367–373.

    Article  CAS  Google Scholar 

  • Laptenko O, Prives C . (2006). Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13: 951–961.

    Article  CAS  Google Scholar 

  • Lee DW, Zhao X, Zhang F, Eisenberg E, Greene LE . (2005). Depletion of GAK/auxilin 2 inhibits receptor-mediated endocytosis and recruitment of both clathrin and clathrin adaptors. J Cell Sci 118: 4311–4321.

    Article  CAS  Google Scholar 

  • Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M . (1991). Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci USA 88: 2874–2878.

    Article  CAS  Google Scholar 

  • Milner J, Medcalf EA . (1990). Temperature-dependent switching between ‘wild-type’ and ‘mutant’ forms of p53-Val135. J Mol Biol 216: 481–484.

    Article  CAS  Google Scholar 

  • Morishima Y, Murphy PJ, Li DP, Sanchez ER, Pratt WB . (2000). Stepwise assembly of a glucocorticoid receptor.hsp90 heterocomplex resolves two sequential ATP-dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. J Biol Chem 275: 18054–18060.

    Article  CAS  Google Scholar 

  • Muller L, Schaupp A, Walerych D, Wegele H, Buchner J . (2004). Hsp90 regulates the activity of wild type p53 under physiological and elevated temperatures. J Biol Chem 279: 48846–48854.

    Article  Google Scholar 

  • Muller P, Ceskova P, Vojtesek B . (2005). Hsp90 is essential for restoring cellular functions of temperature-sensitive p53 mutant protein but not for stabilization and activation of wild-type p53: implications for cancer therapy. J Biol Chem 280: 6682–6691.

    Article  Google Scholar 

  • Muller P, Hrstka R, Coomber D, Lane DP, Vojtesek B . (2008). Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27: 3371–3383.

    Article  CAS  Google Scholar 

  • Newmyer SL, Schmid SL . (2001). Dominant-interfering Hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo. J Cell Biol 152: 607–620.

    Article  CAS  Google Scholar 

  • Pacey S, Banerji U, Judson I, Workman P . (2006). In: Gaestel M (ed). Handbook on Experimental Pharmacology. Springer-Verlag: Berlin, Heidelberg, pp 331–358.

    Google Scholar 

  • Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. (2007). Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28: 622–629.

    Article  CAS  Google Scholar 

  • Pinhasi-Kimhi O, Michalovitz D, Ben-Zeev A, Oren M . (1986). Specific interaction between the p53 cellular tumour antigen and major heat shock proteins. Nature 320: 182–184.

    Article  CAS  Google Scholar 

  • Rudiger S, Freund SM, Veprintsev DB, Fersht AR . (2002). CRINEPT-TROSY NMR reveals p53 core domain bound in an unfolded form to the chaperone Hsp90. Proc Natl Acad Sci USA 99: 11085–11090.

    Article  CAS  Google Scholar 

  • Rutherford SL, Lindquist S . (1998). Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342.

    Article  CAS  Google Scholar 

  • Sangster TA, Lindquist S, Queitsch C . (2004). Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 26: 348–362.

    Article  CAS  Google Scholar 

  • Sasaki M, Nie L, Maki CG . (2007). MDM2 binding induces a conformational change in p53 that is opposed by heat-shock protein 90 and precedes p53 proteasomal degradation. J Biol Chem 282: 14626–14634.

    Article  CAS  Google Scholar 

  • Schulte TW, Neckers LM . (1998). The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42: 273–279.

    Article  CAS  Google Scholar 

  • Selivanova G, Wiman KG . (2007). Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene 26: 2243–2254.

    Article  CAS  Google Scholar 

  • Sepehrnia B, Paz IB, Dasgupta G, Momand J . (1996). Heat shock protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell. J Biol Chem 271: 15084–15090.

    Article  CAS  Google Scholar 

  • Sreedhar AS, Kalmar E, Csermely P, Shen YF . (2004). Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562: 11–15.

    Article  Google Scholar 

  • Sugito K, Yamane M, Hattori H, Hayashi Y, Tohnai I, Ueda M et al. (1995). Interaction between hsp70 and hsp40, eukaryotic homologues of DnaK and DnaJ, in human cells expressing mutant-type p53. FEBS Lett 358: 161–164.

    Article  CAS  Google Scholar 

  • Vousden KH, Lane DP . (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8: 275–283.

    Article  CAS  Google Scholar 

  • Walerych D, Kudla G, Gutkowska M, Wawrzynow B, Muller L, King FW et al. (2004). Hsp90 chaperones wild-type p53 tumor suppressor protein. J Biol Chem 279: 48836–48845.

    Article  CAS  Google Scholar 

  • Wang C, Chen J . (2003). Phosphorylation and hsp90 binding mediate heat shock stabilization of p53. J Biol Chem 278: 2066–2071.

    Article  CAS  Google Scholar 

  • Wegele H, Muller L, Buchner J . (2004). Hsp70 and Hsp90—a relay team for protein folding. Rev Physiol Biochem Pharmacol 151: 1–44.

    Article  CAS  Google Scholar 

  • Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR, Mylonas E et al. (2008). Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc Natl Acad Sci USA 105: 5762–5767.

    Article  CAS  Google Scholar 

  • Zylicz M, Ang D, Liberek K, Georgopoulos C . (1989). Initiation of lambda DNA replication with purified host- and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J 8: 1601–1608.

    Article  CAS  Google Scholar 

  • Zylicz M, King FW, Wawrzynow A . (2001). Hsp70 interactions with the p53 tumour suppressor protein. EMBO J 20: 4634–4638.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Marcin Klejman for sharing purified Hsp90β proteins; Professor Peter Csermely for the plasmid encoding human Hsp90α; Professor Ted Hupp for plasmid for p53 overexpression; Professor Richard Morimoto for plasmids encoding human Hsp70, Hdj1 and Hop; and Professor Kazutoyo Terada for construct for the Hdj2 overexpression. Dawid Walerych is the recipient of a scholarship from the Postgraduate School of Molecular Medicine affiliated with the Medical University of Warsaw. This work was supported by a grant from the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Zylicz or A Zylicz.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walerych, D., Olszewski, M., Gutkowska, M. et al. Hsp70 molecular chaperones are required to support p53 tumor suppressor activity under stress conditions. Oncogene 28, 4284–4294 (2009). https://doi.org/10.1038/onc.2009.281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.281

Keywords

This article is cited by

Search

Quick links