Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells

Abstract

In this study, high-throughput microRNA (miRNA) expression analysis revealed that the expression of miR-140 was associated with chemosensitivity in osteosarcoma tumor xenografts. Tumor cells ectopically transfected with miR-140 were more resistant to methotrexate and 5-fluorouracil (5-FU). Overexpression of miR-140 inhibited cell proliferation in both osteosarcoma U-2 OS (wt-p53) and colon cancer HCT 116 (wt-p53) cell lines, but less so in osteosarcoma MG63 (mut-p53) and colon cancer HCT 116 (null-p53) cell lines. miR-140 induced p53 and p21 expression accompanied with G1 and G2 phase arrest only in cell lines containing wild type of p53. Histone deacetylase 4 (HDAC4) was confirmed to be one of the important targets of miR-140. The expression of endogenous miR-140 was significantly elevated in CD133+hiCD44+hi colon cancer stem-like cells that exhibit slow proliferating rate and chemoresistance. Blocking endogenous miR-140 by locked nucleic acid-modified anti-miR partially sensitized resistant colon cancer stem-like cells to 5-FU treatment. Taken together, our findings indicate that miR-140 is involved in the chemoresistance by reduced cell proliferation through G1 and G2 phase arrest mediated in part through the suppression of HDAC4. miR-140 may be a candidate target to develop novel therapeutic strategy to overcome drug resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alvarez-Garcia I, Miska EA . (2005). MicroRNA functions in animal development and human disease. Development 132: 4653–4662.

    Article  CAS  Google Scholar 

  • Ambros V, Lee RC . (2004). Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol 265: 131–158.

    CAS  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116: 281–297.

    Article  CAS  Google Scholar 

  • Botchkina IL, Rowehl RA, Rivadeneira DE, Karpeh Jr MS, Crawford H, Dufour A et al. (2009). Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis. Cancer Genomics Proteomics 6: 19–29.

    CAS  PubMed  Google Scholar 

  • Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T et al. (2008). p53-responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68: 10094–10104.

    Article  CAS  Google Scholar 

  • Bruheim S, Bruland OS, Breistol K, Maelandsmo GM, Fodstad O . (2004). Human osteosarcoma xenografts and their sensitivity to chemotherapy. Pathol Oncol Res 10: 133–141.

    Article  CAS  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L et al. (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104: 263–269.

    Article  CAS  Google Scholar 

  • Calin G, Croce CM . (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857–866.

    Article  CAS  Google Scholar 

  • Chandar N, Billig B, McMaster J, Novak J . (1992). Inactivation of p53 gene in human and murine osteosarcoma cells. Br J Cancer 65: 208–214.

    Article  CAS  Google Scholar 

  • Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104: 10158–10163.

    Article  CAS  Google Scholar 

  • Dressler LG, Seamer LC, Owens MA, Clark GM, McGuire WL . (1988). DNA flow cytometry and prognostic factors in 1331 frozen breast cancer specimens. Cancer 61: 420–427.

    Article  CAS  Google Scholar 

  • Du L, Wang H, He L, Zhang J, Ni B, Wang X et al. (2008). CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14: 6751–6760.

    Article  CAS  Google Scholar 

  • Eberharter A, Becker PB . (2002). Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3: 224–229.

    Article  CAS  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA et al. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401: 188–193.

    Article  CAS  Google Scholar 

  • Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN et al. (2008). Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res 68: 10105–10112.

    Article  CAS  Google Scholar 

  • Grozinger C, Schreiber SL . (2002). Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9: 3–16.

    Article  CAS  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447: 1130–1134.

    Article  CAS  Google Scholar 

  • Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P et al. (2007). MicroRNA signatures in human ovarian cancer. Cancer Res 67: 8699–8707.

    Article  CAS  Google Scholar 

  • Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S . (2009). Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 23: 806–812.

    Article  CAS  Google Scholar 

  • Koishi K, Yoshikawa R, Tsujimura T, Hashimoto-Tamaoki T, Kojima S, Yanagi H et al. (2006). Persistent CXCR4 expression after preoperative chemoradiotherapy predicts early recurrence and poor prognosis in esophageal cancer. World J Gastroenterol 12: 7585–7590.

    Article  CAS  Google Scholar 

  • Kozak M . (2008). Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene 423: 108–115.

    Article  CAS  Google Scholar 

  • Krishan A . (1975). Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66: 188–193.

    Article  CAS  Google Scholar 

  • Laemmli UK . (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  Google Scholar 

  • Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M . (2006). p53 attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res 66: 10671–10676.

    Article  CAS  Google Scholar 

  • Nicolas FE, Pais H, Schwach F, Lindow M, Kauppinen S, Moulton V et al. (2008). Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA 14: 2513–2520.

    Article  CAS  Google Scholar 

  • O'Brien CA, Pollett A, Gallinger S, Dick JE . (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110.

    Article  CAS  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Fillipowicz W . (2007). Repression of protein synthesis by miRNAs: how many mechanisms? Trends cell Biol 17: 118–126.

    Article  CAS  Google Scholar 

  • Plasterk RH . (2006). MicroRNAs in animal development. Cell 124: 877–881.

    Article  CAS  Google Scholar 

  • Raver-Shapira N, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z et al. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26: 731–743.

    Article  CAS  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111–115.

    Article  CAS  Google Scholar 

  • Sengupta N, Seto E . (2004). Regulation of histone deacetylase activities. J Cell Biochem 93: 57–67.

    Article  CAS  Google Scholar 

  • Song B, Wang Y, Kudo K, Gavin EJ, Xi Y, Ju J . (2008). miR-192 regulates dihydrofolate reductase and cellular proliferation through the p53–microRNA circuit. Clin Cancer Res 14: 8080–8086.

    Article  CAS  Google Scholar 

  • Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I et al. (2006). The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580: 4214–4217.

    Article  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    Article  CAS  Google Scholar 

  • Wilson AJ, Byun DS, Nasser S, Murray LB, Ayyanar K, Arango D et al. (2008). HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell 19: 4062–4075.

    Article  CAS  Google Scholar 

  • Yang XJ, Grégoire S . (2005). Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 25: 2873–2874.

    Article  CAS  Google Scholar 

  • Zhang B, Wang Q, Pan X . (2007). MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210: 279–289.

    Article  CAS  Google Scholar 

  • Zou GM . (2008). Cancer initiating cells or cancer stem cells in the gastrointestinal tract and liver. J Cell Physiol 217: 598–604.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the critical reading of the paper by Stephanie Burke (Stony Brook University). This work was supported by Stony Brook Translational Research Laboratory Start-up fund and NIH CA114043 (J Ju) and MH075020 (J Ju).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Ju.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, B., Wang, Y., Xi, Y. et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 28, 4065–4074 (2009). https://doi.org/10.1038/onc.2009.274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.274

Keywords

This article is cited by

Search

Quick links