Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer

Abstract

Emerging evidence suggests the potential involvement of altered regulation of miRNAs in the pathogenesis of cancers, and these miRNAs are thought to be functional as tumor suppressors or oncogenes. Using miRNA arrays, we identified an miRNA differentially expressed between the MDA-MB-231 cell line and its highly metastatic variant. A bioinformatics search revealed a potential target site for miR-193b within the 3′UTR of uPA. Ectopic expression of miR-193b repressed the expression of sensor constructs harboring the 3′UTR of uPA in breast cancer cell lines. Anti-miR-193b treatment led to an increase of uPA protein and increased cell invasion in MDA-MB-231 cells. In contrast, overexpression of miR-193b significantly reduced uPA protein amounts and inhibited cell invasion in MDA-MB-231 and MDA-MB-435 cells. In an immunodeficient mouse model, miR-193b significantly inhibited the growth and dissemination of xenograft tumors. Immunohistochemical staining and real-time PCR assays showed that miR-193b was a negative regulator of the uPA gene in primary breast tumors. Our research reveals that miR-193b is closely associated with clinical metastasis and identifies miR-193b potentially targets uPA transcripts. Perturbation of the miRNA–mRNA pairing may have important roles in the initiation and development of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

ELISA:

enzyme-linked immunosorbent assay

miRNA:

microRNA

SCID mice:

severe combined immune deficiency mice

uPA:

urokinase plasminogen activator

3′-UTR:

3′-untranslated region

References

  • Achbarou A, Kaiser S, Tremblay G, Ste-Marie LG, Brodt P, Goltzman D et al. (1994). Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res 54: 2372–2377.

    CAS  PubMed  Google Scholar 

  • Ambros V . (2004). The functions of animal microRNAs. Nature 431: 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al. (2007). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27: 2128–2136.

    Article  PubMed  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Biermann JC, Holzscheiter L, Kotzsch M, Luther T, Kiechle-Bahat M, Sweep FC et al. (2008). Quantitative RT-PCR assays for the determination of urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 mRNA in primary tumor tissue of breast cancer patients: comparison to antigen quantification by ELISA. Int J Mol Med 21: 251–259.

    CAS  PubMed  Google Scholar 

  • Blasi F . (1993). Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness. BioEssays 15: 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Busso N, Masur SK, Lazega D, Waxman S, Ossowski L . (1994). Induction of cell migration by pro-urokinase binding to its receptor: possible mechanism for signal transduction in human epithelial cells. J Cell Biol 126: 259–270.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. (2004a). MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101: 11755–17760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004b). Human microRNA genes are frequently located at fragile sites andgenomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castelló R, Landete JM, España F, Vázquez C, Fuster C, Almenar SM et al. (2007). Expression of plasminogen activator inhibitors type 1 and type 3 and urokinase plasminogen activator protein and mRNA in breast cancer. Thromb Res 120: 753–762.

    Article  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS . (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65: 6029–6033.

    Article  CAS  PubMed  Google Scholar 

  • Chapman HA . (1997). Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol 9: 714–724.

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foekens JA, Peters HA, Look MP, Portengen H, Schmitt M, Kramer MD et al. (2000). The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 60: 636–643.

    CAS  PubMed  Google Scholar 

  • Frandsen TL, Holst-Hansen C, Nielsen BS, Christensen IJ, Nyengaard JR, Carmeliet P et al. (2001). Direct evidence of the importance of stromal urokinase plasminogen activator (uPA) in the growth of an experimental human breast cancer using a combined uPA gene-disrupted and immunodeficient xenograft model. Cancer Res 61: 532–537.

    CAS  PubMed  Google Scholar 

  • Guo Y, Chen Z, Zhang L, Zhou F, Shi S, Feng X et al. (2008). Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res 68: 26–33.

    Article  CAS  PubMed  Google Scholar 

  • Gupta GP, Massagué J . (2006). Cancer metastasis: building a framework. Cell 127: 679–695.

    Article  CAS  PubMed  Google Scholar 

  • Holst-Hansen C, Johannessen B, Høyer-Hansen G, Rømer J, Ellis V, Brünner N . (1996). Urokinase-type plasminogen activation in three human breast cancer cell lines correlates with their in vitro invasiveness. Clin Exp Metastasis 14: 297–307.

    CAS  PubMed  Google Scholar 

  • Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S et al. (2008). The microRNAs miR-373 and miR-520c promote tumor invasion and metastasis. Nat Cell Biol 10: 202–210.

    Article  CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    Article  CAS  PubMed  Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C . (2004). Human microRNA targets. PLoS Biol 11: 1862–1879.

    Google Scholar 

  • Johnsen M, Lund LR, Rømer J, Almholt K, Danø K . (1998). Cancer invasion and tissue remodeling: common themes in proteolytic matrix degradation. Curr Opin Cell Biol 10: 667–671.

    Article  CAS  PubMed  Google Scholar 

  • Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. (2005). Combinatorial microRNA target predictions. Nat Genet 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human gene are microRNA targets. Cell 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . (2003). Prediction of mammalian microRNA targets. Cell 115: 787–798.

    CAS  PubMed  Google Scholar 

  • Li DQ, Wang L, Fei F, Hou YF, Luo JM, Chen W et al. (2006). Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics 6: 3352–3368.

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA . (2007). Tumor invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449: 682–688.

    Article  CAS  PubMed  Google Scholar 

  • McSherry EA, Donatello S, Hopkins AM, McDonnell S . (2007). Molecular basis of invasion in breast cancer. Cell Mol Life Sci 64: 3201–3218.

    Article  CAS  PubMed  Google Scholar 

  • Murchison EP, Hannon GJ . (2004). miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 16: 223–229.

    Article  CAS  PubMed  Google Scholar 

  • Nanbu R, Menoud PA, Nagamine Y . (1994). Multiple instability-regulating sites in the 3′ untranslated region of the urokinase-type plasminogen activator mRNA. Mol Cell Biol 14: 4920–4928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakneshan P, Szyf M, Farias-Eisner R, Rabbani SA . (2004a). Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. J Biol Chem 279: 31735–31744.

    Article  CAS  PubMed  Google Scholar 

  • Pakneshan P, Têtu B, Rabbani SA . (2004b). Demethylation of urokinase promoter as a prognostic marker in patients with breast carcinoma. Clin Cancer Res 10: 3035–3041.

    Article  CAS  PubMed  Google Scholar 

  • Pulukuri SM, Rao JS . (2007). Small interfering RNA directed reversal of urokinase plasminogen activator demethylation inhibits prostate tumor growth and metastasis. Cancer Res 67: 6637–6646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabbani SA, Mazar AP . (2007). Evaluating distant metastases in breast cancer: from biology to outcomes. Cancer Metastasis Rev 26: 663–674.

    Article  PubMed  Google Scholar 

  • Rabbani SA, Xing RH . (1998). Role of urokinase (uPA) and its receptor (uPAR) in invasion and metastasis of hormone-dependent malignancies. Int J Oncol 12: 911–920.

    CAS  PubMed  Google Scholar 

  • Sidenius N, Blasi F . (2003). The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev 22: 205–222.

    Article  CAS  PubMed  Google Scholar 

  • Sliva D, Rizzo MT, English D . (2002). Phosphatidylinositol 3-kinase and NF-kappaB regulate motility of invasive MDA-MB-231 human breast cancer cells by the secretion of urokinase-type plasminogen activator. J Biol Chem 277: 3150–3157.

    Article  CAS  PubMed  Google Scholar 

  • Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451: 147–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetu B, Brisson J, Lapointe H, Bernard P . (1998). Prognostic significance of stromelysin 3, gelatinase A and urokinase expression in breast cancer. Hum Pathol 29: 979–985.

    Article  CAS  PubMed  Google Scholar 

  • Têtu B, Brisson J, Wang CS, Lapointe H, Beaudry G, Blanchette C . (2001). Expression of cathepsin D, stromelysin-3 and urokinase by reactive stromal cells on breast carcinoma prognosis. Cancer 92: 2957–2964.

    Article  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J et al. (2008). MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68: 425–433.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants from the National Basic Research Program of China (2006CB910501), National Natural Science Foundation of China (30371580, 30572109) and Shanghai Science and Technology Committee (03J14019, 06DJ14004, 06DZ19504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P-J Yan.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XF., Yan, PJ. & Shao, ZM. Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene 28, 3937–3948 (2009). https://doi.org/10.1038/onc.2009.245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.245

Keywords

This article is cited by

Search

Quick links