Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes

Abstract

GATA-2, a member of the GATA family of transcription factors, is involved in androgen receptor (AR) signaling, however, little is known regarding its role in prostate cancer. Here, we report that GATA-2 is expressed in a substantial proportion of prostate cancers and that high expression of GATA-2 is associated with biochemical recurrence and distant metastatic progression in a validation set of 203 cancers. In vitro data show that GATA-2 is directly recruited to the promoter region of the AR upon androgen stimulation of LNCaP prostate cancer cells with 5α-dihydroxytestosterone (DHT) for 24 h. Ectopic GATA-2 expression causes the induction of AR transcript levels under androgen-depleted conditions (P<0.05). The expression of the AR target gene, AZGP1, is induced upon androgen stimulation and this effect is repressed by GATA-2. In contrast, GATA-2 significantly increases transcript levels of KLK2, which increases further in a time-dependent manner on DHT treatment and in the presence of GATA-2. These results indicate that upregulation of GATA-2 may contribute to the progression to aggressive prostate cancer through modulation of expression of AR and key androgen-regulated genes, one of which, AZGP1, is associated with the progression to metastatic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Bao Y, Bing C, Hunter L, Jenkins JR, Wabitsch M, Trayhurn P . (2005). Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed and secreted by human (SGBS) adipocytes. FEBS Lett 579: 41–47.

    Article  CAS  Google Scholar 

  • Bing C, Bao Y, Jenkins J, Sanders P, Manieri M, Cinti S et al. (2004). Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc Natl Acad Sci USA 101: 2500–2505.

    Article  CAS  Google Scholar 

  • Borgono CA, Michael IP, Diamandis EP . (2004). Human tissue kallikreins: physiologic roles and applications in cancer. Mol Cancer Res 2: 257–280.

    CAS  PubMed  Google Scholar 

  • Cox DR . (1972). Regression models and life-tables. J R Stat Soc Series B Methodol 34: 187–220.

    Google Scholar 

  • Dehm SM, Tindall DJ . (2006). Molecular regulation of androgen action in prostate cancer. J Cell Biochem 99: 333–344.

    Article  CAS  Google Scholar 

  • Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M . (2007). Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 67: 6477–6483.

    Article  CAS  Google Scholar 

  • Genomatix; www.genomatix.de.

  • Hayakawa F, Towatari M, Ozawa Y, Tomita A, Privalsky ML, Saito H . (2004). Functional regulation of GATA-2 by acetylation. J Leukoc Biol 75: 529–540.

    Article  CAS  Google Scholar 

  • Heemers HV, Regan KM, Schmidt LJ, Anderson SK, Ballman KV, Tindall DJ . (2009). Androgen modulation of coregulator expression in prostate cancer cells. Mol Endocrinol 23: 572–583.

    Article  CAS  Google Scholar 

  • Hendriksen PJ, Dits NF, Kokame K, Veldhoven A, van Weerden WM, Bangma CH et al. (2006). Evolution of the androgen receptor pathway during progression of prostate cancer. Cancer Res 66: 5012–5020.

    Article  CAS  Google Scholar 

  • Henshall SM, Afar DE, Hiller J, Horvath LG, Quinn DI, Rasiah KK et al. (2003). Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res 63: 4196–4203.

    CAS  PubMed  Google Scholar 

  • Henshall SM, Horvath LG, Quinn DI, Eggleton SA, Grygiel JJ, Stricker PD et al. (2006). Zinc-alpha2-glycoprotein expression as a predictor of metastatic prostate cancer following radical prostatectomy. J Natl Cancer Inst 98: 1420–1424.

    Article  CAS  Google Scholar 

  • Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, Papsidero L et al. (1980). The LNCaP cell line—a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 37: 115–132.

    CAS  PubMed  Google Scholar 

  • Ingenuity; http://www.ingenuity.com/index.html.

  • Kaplan EL, Meier P . (1958). Nonparametric Estimation from Incomplete Observations. J Am Stat Assoc 53: 457–481.

    Article  Google Scholar 

  • Kato S, Matsumoto T, Kawano H, Sato T, Takeyama K . (2004). Function of androgen receptor in gene regulations. J Steroid Biochem Mol Biol 89-90: 627–633.

    Article  CAS  Google Scholar 

  • Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD et al. (1999). Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 59: 4180–4184.

    CAS  PubMed  Google Scholar 

  • Lowry JA, Atchley WR . (2000). Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol 50: 103–115.

    Article  CAS  Google Scholar 

  • Magklara A, Smith CL . (2009). A composite intronic element directs dynamic binding of the progesterone receptor and GATA-2. Mol Endocrinol 23: 61–73.

    Article  CAS  Google Scholar 

  • Masuda K, Werner T, Maheshwari S, Frisch M, Oh S, Petrovics G et al. (2005). Androgen receptor binding sites identified by a GREF_GATA model. J Mol Biol 353: 763–771.

    Article  CAS  Google Scholar 

  • Matsuyama M, Yoshimura R . (2008). Peroxisome proliferator-activated receptor-gamma is a potent target for prevention and treatment in human prostate and testicular cancer. PPAR Res 2008: 249849.

    Article  Google Scholar 

  • Minegishi N, Suzuki N, Kawatani Y, Shimizu R, Yamamoto M . (2005). Rapid turnover of GATA-2 via ubiquitin-proteasome protein degradation pathway. Genes Cells 10: 693–704.

    Article  CAS  Google Scholar 

  • Mohler JL, Gregory CW, Ford 3rd OH, Kim D, Weaver CM, Petrusz P et al. (2004). The androgen axis in recurrent prostate cancer. Clin Cancer Res 10: 440–448.

    Article  CAS  Google Scholar 

  • Nelson PS, Clegg N, Arnold H, Ferguson C, Bonham M, White J et al. (2002). The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci USA 99: 11890–11895.

    Article  CAS  Google Scholar 

  • Nemer G, Nemer M . (2003). Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and -6. Dev Biol 254: 131–148.

    Article  CAS  Google Scholar 

  • Oren T, Torregroza I, Evans T . (2005). An Oct-1 binding site mediates activation of the gata2 promoter by BMP signaling. Nucleic Acids Res 33: 4357–4367.

    Article  CAS  Google Scholar 

  • Perez-Stable CM, Pozas A, Roos BA . (2000). A role for GATA transcription factors in the androgen regulation of the prostate-specific antigen gene enhancer. Mol Cell Endocrinol 167: 43–53.

    Article  CAS  Google Scholar 

  • Rasiah KK, Kench JG, Gardiner-Garden M, Biankin AV, Golovsky D, Brenner PC et al. (2006). Aberrant neuropeptide Y and macrophage inhibitory cytokine-1 expression are early events in prostate cancer development and are associated with poor prognosis. Cancer Epidemiol Biomarkers Prev 15: 711–716.

    Article  CAS  Google Scholar 

  • Riegman PH, Vlietstra RJ, van der Korput JA, Brinkmann AO, Trapman J . (1991). The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Mol Endocrinol 5: 1921–1930.

    Article  CAS  Google Scholar 

  • Roche PJ, Hoare SA, Parker MG . (1992). A consensus DNA-binding site for the androgen receptor. Mol Endocrinol 6: 2229–2235.

    CAS  PubMed  Google Scholar 

  • Simon MC . (1995). Gotta have GATA. Nat Genet 11: 9–11.

    Article  CAS  Google Scholar 

  • Tong Q, Dalgin G, Xu H, Ting CN, Leiden JM, Hotamisligil GS . (2000). Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290: 134–138.

    Article  CAS  Google Scholar 

  • Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X et al. (2004). Mutation of GATA3 in human breast tumors. Oncogene 23: 7669–7678.

    Article  CAS  Google Scholar 

  • Wang G, Jones SJ, Marra MA, Sadar MD . (2006). Identification of genes targeted by the androgen and PKA signaling pathways in prostate cancer cells. Oncogene 25: 7311–7323.

    Article  CAS  Google Scholar 

  • Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X . (2007a). SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res 67: 528–536.

    Article  CAS  Google Scholar 

  • Wang Q, Carroll JS, Brown M . (2005). Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19: 631–642.

    Article  CAS  Google Scholar 

  • Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK et al. (2007b). A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27: 380–392.

    Article  Google Scholar 

  • Weiss MJ, Orkin SH . (1995). GATA transcription factors: key regulators of hematopoiesis. Exp Hematol 23: 99–107.

    CAS  PubMed  Google Scholar 

  • Xu Y, Iyengar S, Roberts RL, Shappell SB, Peehl DM . (2003). Primary culture model of peroxisome proliferator-activated receptor gamma activity in prostate cancer cells. J Cell Physiol 196: 131–143.

    Article  CAS  Google Scholar 

  • Young CY, Andrews PE, Montgomery BT, Tindall DJ . (1992). Tissue-specific and hormonal regulation of human prostate-specific glandular kallikrein. Biochemistry 31: 818–824.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the Cancer Institute NSW, the National Health and Medical Research Council, the Prostate Cancer Foundation of Australia and the RT Hall Trust. We thank Professor Liz Musgrove, Dr Ross Laybutt and Dr Liz Caldon for helpful discussion and critical reading of the paper. Furthermore, we thank Ruth PeBenito for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Henshall.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, M., Locke, W., Sutherland, R. et al. A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes. Oncogene 28, 3847–3856 (2009). https://doi.org/10.1038/onc.2009.243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.243

Keywords

This article is cited by

Search

Quick links