Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Subtelomeric DNA hypomethylation is not required for telomeric sister chromatid exchanges in ALT cells

Abstract

Most human tumor cells acquire immortality by activating the expression of telomerase, a ribonucleoprotein that maintains stable telomere lengths at chromosome ends throughout cell divisions. Other tumors use an alternative mechanism of telomere lengthening (ALT), characterized by high frequencies of telomeric sister chromatid exchanges (T-SCEs). Mechanisms of ALT activation are still poorly understood, but recent studies suggest that DNA hypomethylation of chromosome ends might contribute to the process by facilitating T-SCEs. Here, we show that ALT/T-SCEhigh tumor cells display low DNA-methylation levels at the D4Z4 and DNF92 subtelomeric sequences. Surprisingly, however, the same sequences retained high methylation levels in ALT/T-SCEhigh SV40-immortalized fibroblasts. Moreover, T-SCE rates were efficiently reduced by ectopic expression of active telomerase in ALT tumor cells, even though subtelomeric sequences remained hypomethylated. We also show that hypomethylation of subtelomeric sequences in ALT tumor cells is correlated with genome-wide hypomethylation of Alu repeats and pericentromeric Sat2 DNA sequences. Overall, this study suggests that, although subtelomeric DNA hypomethylation is often coincident with the ALT process in human tumor cells, it is not required for T-SCE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bailey SM, Brenneman MA, Goodwin EH . (2004). Frequent recombination in telomeric DNA may extend the proliferative life of telomerase-negative cells. Nucleic Acids Res 32: 3743–3751.

    Article  CAS  Google Scholar 

  • Bechter OE, Shay JW, Wright WE . (2004). The frequency of homologous recombination in human ALT cells. Cell Cycle 3: 547–549.

    Article  CAS  Google Scholar 

  • Benetti R, Garcia-Cao M, Blasco MA . (2007a). Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 39: 243–250.

    Article  CAS  Google Scholar 

  • Benetti R, Gonzalo S, Jaco I, Schotta G, Klatt P, Jenuwein T et al. (2007b). Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. J Cell Biol 178: 925–936.

    Article  CAS  Google Scholar 

  • Blackburn EH . (2001). Switching and signaling at the telomere. Cell 106: 661–673.

    Article  CAS  Google Scholar 

  • Blasco MA . (2007). The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8: 299–309.

    Article  CAS  Google Scholar 

  • Brock GJ, Charlton J, Bird A . (1999). Densely methylated sequences that are preferentially localized at telomere-proximal regions of human chromosomes. Gene 240: 269–277.

    Article  CAS  Google Scholar 

  • Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR . (1997). Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3: 1271–1274.

    Article  CAS  Google Scholar 

  • Cacurri S, Piazzo N, Deidda G, Vigneti E, Galluzzi G, Colantoni L et al. (1998). Sequence homology between 4qter and 10qter loci facilitates the instability of subtelomeric KpnI repeat units implicated in facioscapulohumeral muscular dystrophy. Am J Hum Genet 63: 181–190.

    Article  CAS  Google Scholar 

  • Cadieux B, Ching TT, VandenBerg SR, Costello JF . (2006). Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res 66: 8469–8476.

    Article  CAS  Google Scholar 

  • Cerone MA, Autexier C, Londono-Vallejo JA, Bacchetti S . (2005). A human cell line that maintains telomeres in the absence of telomerase and of key markers of ALT. Oncogene 24: 7893–7901.

    Article  CAS  Google Scholar 

  • Cerone MA, Londono-Vallejo JA, Bacchetti S . (2001). Telomere maintenance by telomerase and by recombination can coexist in human cells. Hum Mol Genet 10: 1945–1952.

    Article  CAS  Google Scholar 

  • Cornforth MN, Eberle RL . (2001). Termini of human chromosomes display elevated rates of mitotic recombination. Mutagenesis 16: 85–89.

    Article  CAS  Google Scholar 

  • de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM et al. (1990). Structure and variability of human chromosome ends. Mol Cell Biol 10: 518–527.

    Article  CAS  Google Scholar 

  • De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T . (1996). The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci USA 93: 7149–7153.

    Article  CAS  Google Scholar 

  • De Smet C, Loriot A, Boon T . (2004). Promoter-dependent mechanism leading to selective hypomethylation within the 5' region of gene MAGE-A1 in tumor cells. Mol Cell Biol 24: 4781–4790.

    Article  CAS  Google Scholar 

  • Der-Sarkissian H, Vergnaud G, Borde YM, Thomas G, Londono-Vallejo JA . (2002). Segmental polymorphisms in the proterminal regions of a subset of human chromosomes. Genome Res 12: 1673–1678.

    Article  CAS  Google Scholar 

  • Dunham MA, Neumann AA, Fasching CL, Reddel RR . (2000). Telomere maintenance by recombination in human cells. Nat Genet 26: 447–450.

    Article  CAS  Google Scholar 

  • Ehrlich M . (2002). DNA methylation in cancer: too much, but also too little. Oncogene 21: 5400–5413.

    Article  CAS  Google Scholar 

  • Ehrlich M . (2006). Cancer-linked DNA hypomethylation and its relationship to hypermethylation. Curr Top Microbiol Immunol 310: 251–274.

    CAS  PubMed  Google Scholar 

  • Flint J, Bates GP, Clark K, Dorman A, Willingham D, Roe BA et al. (1997). Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains. Hum Mol Genet 6: 1305–1313.

    Article  CAS  Google Scholar 

  • Ford LP, Zou Y, Pongracz K, Gryaznov SM, Shay JW, Wright WE . (2001). Telomerase can inhibit the recombination-based pathway of telomere maintenance in human cells. J Biol Chem 276: 32198–32203.

    Article  CAS  Google Scholar 

  • Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M et al. (2006). DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8: 416–424.

    Article  CAS  Google Scholar 

  • Hayflick L, Moorhead PS . (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585–621.

    Article  CAS  Google Scholar 

  • Henson JD, Neumann AA, Yeager TR, Reddel RR . (2002). Alternative lengthening of telomeres in mammalian cells. Oncogene 21: 598–610.

    Article  CAS  Google Scholar 

  • Kholmanskikh O, Loriot A, Brasseur F, De Plaen E, De Smet C . (2008). Expression of BORIS in melanoma: lack of association with MAGE-A1 activation. Int J Cancer 122: 777–784.

    Article  CAS  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015.

    Article  CAS  Google Scholar 

  • Kim NW, Wu F . (1997). Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res 25: 2595–2597.

    Article  CAS  Google Scholar 

  • Londono-Vallejo JA, Der-Sarkissian H, Cazes L, Bacchetti S, Reddel RR . (2004). Alternative lengthening of telomeres is characterized by high rates of telomeric exchange. Cancer Res 64: 2324–2327.

    Article  CAS  Google Scholar 

  • Loriot A, De Plaen E, Boon T, De Smet C . (2006). Transient down-regulation of DNMT1 methyltransferase leads to activation and stable hypomethylation of MAGE-A1 in melanoma cells. J Biol Chem 281: 10118–10126.

    Article  CAS  Google Scholar 

  • Masutomi K, Possemato R, Wong JM, Currier JL, Tothova Z, Manola JB et al. (2005). The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci USA 102: 8222–8227.

    Article  CAS  Google Scholar 

  • Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M et al. (2008). SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452: 492–496.

    Article  CAS  Google Scholar 

  • Monfouilloux S, Avet-Loiseau H, Amarger V, Balazs I, Pourcel C, Vergnaud G . (1998). Recent human-specific spreading of a subtelomeric domain. Genomics 51: 165–176.

    Article  CAS  Google Scholar 

  • Nakamura TM, Cooper JP, Cech TR . (1998). Two modes of survival of fission yeast without telomerase. Science 282: 493–496.

    Article  CAS  Google Scholar 

  • Perrem K, Colgin LM, Neumann AA, Yeager TR, Reddel RR . (2001). Coexistence of alternative lengthening of telomeres and telomerase in hTERT-transfected GM847 cells. Mol Cell Biol 21: 3862–3875.

    Article  CAS  Google Scholar 

  • Riethman H . (2008). Human telomere structure and biology. Annu Rev Genomics Hum Genet 9: 1–19.

    Article  CAS  Google Scholar 

  • Riethman H, Ambrosini A, Paul S . (2005). Human subtelomere structure and variation. Chromosome Res 13: 505–515.

    Article  CAS  Google Scholar 

  • Shay JW, Bacchetti S . (1997). A survey of telomerase activity in human cancer. Eur J Cancer 33: 787–791.

    Article  CAS  Google Scholar 

  • Shimojima M, Komine F, Hisatomi H, Shimizu T, Moriyama M, Arakawa Y . (2004). Detection of telomerase activity, telomerase RNA component, and telomerase reverse transcriptase in human hepatocellular carcinoma. Hepatol Res 29: 31–38.

    Article  CAS  Google Scholar 

  • Siedlecki P, Zielenkiewicz P . (2006). Mammalian DNA methyltransferases. Acta Biochim Pol 53: 245–256.

    CAS  PubMed  Google Scholar 

  • Tilman G, Mattiussi M, Brasseur F, van Baren N, Decottignies A . (2007). Human periostin gene expression in normal tissues, tumors and melanoma: evidences for periostin production by both stromal and melanoma cells. Mol Cancer 6: 80.

    Article  Google Scholar 

  • Traversari C, van der Bruggen P, Van den Eynde B, Hainaut P, Lemoine C, Ohta N et al. (1992). Transfection and expression of a gene coding for a human melanoma antigen recognized by autologous cytolytic T lymphocytes. Immunogenetics 35: 145–152.

    Article  CAS  Google Scholar 

  • van Overveld PG, Lemmers RJ, Sandkuijl LA, Enthoven L, Winokur ST, Bakels F et al. (2003). Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nat Genet 35: 315–317.

    Article  CAS  Google Scholar 

  • Vera E, Canela A, Fraga MF, Esteller M, Blasco MA . (2008). Epigenetic regulation of telomeres in human cancer. Oncogene 27: 6817–6833.

    Article  CAS  Google Scholar 

  • Watson JD . (1972). Origin of concatemeric T7 DNA. Nat New Biol 239: 197–201.

    Article  CAS  Google Scholar 

  • Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E et al. (2005). Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33: 6823–6836.

    Article  CAS  Google Scholar 

  • Wilson VL, Jones PA . (1983). DNA methylation decreases in aging but not in immortal cells. Science 220: 1055–1057.

    Article  CAS  Google Scholar 

  • Yehezkel S, Segev Y, Viegas-Pequignot E, Skorecki K, Selig S . (2008). Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet 17: 2776–2789.

    Article  CAS  Google Scholar 

  • Young JI, Sedivy JM, Smith JR . (2003). Telomerase expression in normal human fibroblasts stabilizes DNA 5-methylcytosine transferase I. J Biol Chem 278: 19904–19908.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M Swinarska, F Brasseur, W Wright, F Fuks, J Lingner, F d'Adda di Fagagna, F Journe, H Id Boufker and C Heirman for the generous gifts of cell lines and plasmids. We thank all the members of the GENEPI group for their constant support and help. This study was supported by the Fonds National de la Recherche Scientifique (FNRS), Belgium. GT is supported by a PhD fellowship grant from Télévie/FNRS. AL is supported by a post-doctoral grant from the FNRS. Work in the ‘Telomere&Cancer’ laboratory is supported by grants from ANR, ARC, INCa and La Ligue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Decottignies.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilman, G., Loriot, A., Van Beneden, A. et al. Subtelomeric DNA hypomethylation is not required for telomeric sister chromatid exchanges in ALT cells. Oncogene 28, 1682–1693 (2009). https://doi.org/10.1038/onc.2009.23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.23

Keywords

This article is cited by

Search

Quick links