Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NGF inhibits human leukemia proliferation by downregulating cyclin A1 expression through promoting acinus/CtBP2 association

Abstract

Cyclin A1 is essential for leukemia progression, and its expression is tightly regulated by acinus, a nuclear speckle protein. However, the molecular mechanism of how acinus mediates cyclin A1 expression remains elusive. Here we show that transcription corepressor CtBP2 directly binds acinus, which is regulated by nerve growth factor (NGF), inhibiting its stimulatory effect on cyclin A1, but not cyclin A2, expression in leukemia. NGF, a cognate ligand for the neurotrophic receptor TrkA, promotes the interaction between CtBP2 and acinus through triggering acinus phosphorylation by Akt. Overexpression of CtBP2 diminishes cyclin A1 transcription, whereas depletion of CtBP2 abolishes NGF's suppressive effect on cyclin A1 expression. Strikingly, gambogic amide, a newly identified TrkA agonist, potently represses cyclin A1 expression, thus blocking K562 cell proliferation. Moreover, gambogic amide ameliorates the leukemia progression in K562 cells inoculated nude mice. Hence, NGF downregulates cyclin A1 expression through escalating CtBP2/acinus complex formation, and gambogic amide might be useful for human leukemia treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G . (1993). A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 12: 469–478.

    Article  CAS  Google Scholar 

  • Chan CB, Liu X, Tang X, Fu H, Ye K . (2007). Akt phosphorylation of zyxin mediates its interaction with acinus-S and prevents acinus-triggered chromatin condensation. Cell Death Differ 14: 1688–1699.

    Article  CAS  Google Scholar 

  • Chen J, Gu HY, Lu N, Yang Y, Liu W, Qi Q et al. (2008). Microtubule depolymerization and phosphorylation of c-Jun N-terminal kinase-1 and p38 were involved in gambogic acid induced cell cycle arrest and apoptosis in human breast carcinoma MCF-7 cells. Life Sci 83: 103–109.

    Article  CAS  Google Scholar 

  • Chevalier S, Praloran V, Smith C, MacGrogan D, Ip NY, Yancopoulos GD et al. (1994). Expression and functionality of the trkA proto-oncogene product/NGF receptor in undifferentiated hematopoietic cells. Blood 83: 1479–1485.

    CAS  Google Scholar 

  • De Weck Z, Pande J, Kagi JH . (1987). Interdependence of coenzyme-induced conformational work and binding potential in yeast alcohol and porcine heart lactate dehydrogenases: a hydrogen-deuterium exchange study. Biochemistry 26: 4769–4776.

    Article  CAS  Google Scholar 

  • Fjeld CC, Birdsong WT, Goodman RH . (2003). Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 100: 9202–9207.

    Article  CAS  Google Scholar 

  • Fox AH, Liew C, Holmes M, Kowalski K, Mackay J, Crossley M . (1999). Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J 18: 2812–2822.

    Article  CAS  Google Scholar 

  • Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM et al. (2006). 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9: 1382–1387.

    Article  CAS  Google Scholar 

  • Guo QL, You QD, Wu ZQ, Yuan ST, Zhao L . (2004). General gambogic acids inhibited growth of human hepatoma SMMC-7721 cells in vitro and in nude mice. Acta Pharmacol Sin 25: 769–774.

    CAS  PubMed  Google Scholar 

  • Hong EG, Jung DY, Ko HJ, Zhang Z, Ma Z, Jun JY et al. (2007). Nonobese, insulin-deficient Ins2Akita mice develop type 2 diabetes phenotypes including insulin resistance and cardiac remodeling. Am J Physiol Endocrinol Metab 293: E1687–E1696.

    Article  CAS  Google Scholar 

  • Hu Y, Yao J, Liu Z, Liu X, Fu H, Ye K . (2005). Akt phosphorylates acinus and inhibits its proteolytic cleavage, preventing chromatin condensation. EMBO J 24: 3543–3554.

    Article  CAS  Google Scholar 

  • Jackson GR, Werrbach-Perez K, Ezell EL, Post JF, Perez-Polo JR . (1992). Nerve growth factor effects on pyridine nucleotides after oxidant injury of rat pheochromocytoma cells. Brain Res 592: 239–248.

    Article  CAS  Google Scholar 

  • Jang SW, Okada M, Sayeed I, Xiao G, Stein D, Jin P et al. (2007). Gambogic amide, a selective agonist for TrkA receptor that possesses robust neurotrophic activity, prevents neuronal cell death. Proc Natl Acad Sci USA 104: 16329–16334.

    Article  CAS  Google Scholar 

  • Jang SW, Yang SJ, Ehlen A, Dong S, Khoury H, Chen J et al. (2008). Serine/arginine protein-specific kinase 2 promotes leukemia cell proliferation by phosphorylating acinus and regulating cyclin A1. Cancer Res 68: 4559–4570.

    Article  CAS  Google Scholar 

  • Ji P, Agrawal S, Diederichs S, Baumer N, Becker A, Cauvet T et al. (2005). Cyclin A1, the alternative A-type cyclin, contributes to G1/S cell cycle progression in somatic cells. Oncogene 24: 2739–2744.

    Article  CAS  Google Scholar 

  • Kaebisch A, Brokt S, Seay U, Lohmeyer J, Jaeger U, Pralle H . (1996). Expression of the nerve growth factor receptor c-TRK in human myeloid leukaemia cells. Br J Haematol 95: 102–109.

    Article  CAS  Google Scholar 

  • Kaplan DR, Stephens RM . (1994). Neurotrophin signal transduction by the Trk receptor. J Neurobiol 25: 1404–1417.

    Article  CAS  Google Scholar 

  • Kato T, Muraski J, Chen Y, Tsujita Y, Wall J, Glembotski CC et al. (2005). Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. J Clin Invest 115: 2716–2730.

    Article  CAS  Google Scholar 

  • Katsanis N, Fisher EM . (1998). A novel C-terminal binding protein (CTBP2) is closely related to CTBP1, an adenovirus E1A-binding protein, and maps to human chromosome 21q21.3. Genomics 47: 294–299.

    Article  CAS  Google Scholar 

  • Kramer A, Hochhaus A, Saussele S, Reichert A, Willer A, Hehlmann R . (1998). Cyclin A1 is predominantly expressed in hematological malignancies with myeloid differentiation. Leukemia 12: 893–898.

    Article  CAS  Google Scholar 

  • Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR et al. (2002). Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 10: 857–869.

    Article  CAS  Google Scholar 

  • Li Z, Beutel G, Rhein M, Meyer J, Koenecke C, Neumann T et al. (2009). High-affinity neurotrophin receptors and ligands promote leukemogenesis. Blood 113: 2028–2037.

    Article  CAS  Google Scholar 

  • Liao C, Wang XY, Wei HQ, Li SQ, Merghoub T, Pandolfi PP et al. (2001). Altered myelopoiesis and the development of acute myeloid leukemia in transgenic mice overexpressing cyclin A1. Proc Natl Acad Sci USA 98: 6853–6858.

    Article  CAS  Google Scholar 

  • Liu W, Guo QL, You QD, Zhao L, Gu HY, Yuan ST . (2005). Anticancer effect and apoptosis induction of gambogic acid in human gastric cancer line BGC-823. World J Gastroenterol 11: 3655–3659.

    Article  CAS  Google Scholar 

  • Liu X, Hu Y, Hao C, Rempel SA, Ye K . (2007). PIKE-A is a proto-oncogene promoting cell growth, transformation and invasion. Oncogene 26: 4918–4927.

    Article  CAS  Google Scholar 

  • McLure KG, Takagi M, Kastan MB . (2004). NAD+ modulates p53 DNA binding specificity and function. Mol Cell Biol 24: 9958–9967.

    Article  CAS  Google Scholar 

  • Meyer J, Rhein M, Schiedlmeier B, Kustikova O, Rudolph C, Kamino K et al. (2007). Remarkable leukemogenic potency and quality of a constitutively active neurotrophin receptor, deltaTrkA. Leukemia 21: 2171–2180.

    Article  CAS  Google Scholar 

  • Miller JP, Yeh N, Vidal A, Koff A . (2007). Interweaving the cell cycle machinery with cell differentiation. Cell Cycle 6: 2932–2938.

    Article  CAS  Google Scholar 

  • Missale C, Boroni F, Losa M, Giovanelli M, Zanellato A, Dal Toso R et al. (1993). Nerve growth factor suppresses the transforming phenotype of human prolactinomas. Proc Natl Acad Sci USA 90: 7961–7965.

    Article  CAS  Google Scholar 

  • Missale C, Codignola A, Sigala S, Finardi A, Paez-Pereda M, Sher E et al. (1998). Nerve growth factor abrogates the tumorigenicity of human small cell lung cancer cell lines. Proc Natl Acad Sci USA 95: 5366–5371.

    Article  CAS  Google Scholar 

  • Nardini M, Svergun D, Konarev PV, Spano S, Fasano M, Bracco C et al. (2006). The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured. Protein Sci 15: 1042–1050.

    Article  CAS  Google Scholar 

  • Paez Pereda M, Missale C, Grubler Y, Arzt E, Schaaf L, Stalla GK . (2000). Nerve growth factor and retinoic acid inhibit proliferation and invasion in thyroid tumor cells. Mol Cell Endocrinol 167: 99–106.

    Article  CAS  Google Scholar 

  • Qiang L, Yang Y, You QD, Ma YJ, Yang L, Nie FF et al. (2008). Inhibition of glioblastoma growth and angiogenesis by gambogic acid: an in vitro and in vivo study. Biochem Pharmacol 75: 1083–1092.

    Article  CAS  Google Scholar 

  • Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y . (1999). Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401: 168–173.

    Article  CAS  Google Scholar 

  • Schwerk C, Prasad J, Degenhardt K, Erdjument-Bromage H, White E, Tempst P et al. (2003). ASAP, a novel protein complex involved in RNA processing and apoptosis. Mol Cell Biol 23: 2981–2990.

    Article  CAS  Google Scholar 

  • Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, Gill A et al. (2005). The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell 7: 351–362.

    Article  CAS  Google Scholar 

  • Shu W, Chen Y, Li R, Wu Q, Cui G, Ke W et al. (2008). Involvement of regulations of nucleophosmin and nucleoporins in gambogic acid-induced apoptosis in Jurkat cells. Basic Clin Pharmacol Toxicol 103: 530–537.

    Article  CAS  Google Scholar 

  • Sigala S, Faraoni I, Botticini D, Paez-Pereda M, Missale C, Bonmassar E et al. (1999). Suppression of telomerase, reexpression of KAI1, and abrogation of tumorigenicity by nerve growth factor in prostate cancer cell lines. Clin Cancer Res 5: 1211–1218.

    CAS  PubMed  Google Scholar 

  • Skaper SD . (2008). The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol Disord Drug Targets 7: 46–62.

    Article  CAS  Google Scholar 

  • Tange TO, Shibuya T, Jurica MS, Moore MJ . (2005). Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA 11: 1869–1883.

    Article  CAS  Google Scholar 

  • Tao Z, Zhou Y, Lu J, Duan W, Qin Y, He X et al. (2007). Caspase-8 preferentially senses the apoptosis-inducing action of NG-18, a Gambogic acid derivative, in human leukemia HL-60 cells. Cancer Biol Ther 6: 691–696.

    Article  CAS  Google Scholar 

  • Thio SS, Bonventre JV, Hsu SI . (2004). The CtBP2 co-repressor is regulated by NADH-dependent dimerization and possesses a novel N-terminal repression domain. Nucleic Acids Res 32: 1836–1847.

    Article  CAS  Google Scholar 

  • Tria MA, Fusco M, Vantini G, Mariot R . (1994). Pharmacokinetics of nerve growth factor (NGF) following different routes of administration to adult rats. Exp Neurol 127: 178–183.

    Article  CAS  Google Scholar 

  • Tsuda T, Wong D, Dolovich J, Bienenstock J, Marshall J, Denburg JA . (1991). Synergistic effects of nerve growth factor and granulocyte-macrophage colony-stimulating factor on human basophilic cell differentiation. Blood 77: 971–979.

    CAS  PubMed  Google Scholar 

  • Turner J, Crossley M . (1998). Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. EMBO J 17: 5129–5140.

    Article  CAS  Google Scholar 

  • Vucetic Z, Zhang Z, Zhao J, Wang F, Soprano KJ, Soprano DR . (2008). Acinus-S’ represses retinoic acid receptor (RAR)-regulated gene expression through interaction with the B domains of RARs. Mol Cell Biol 28: 2549–2558.

    Article  CAS  Google Scholar 

  • Wolgemuth DJ, Lele KM, Jobanputra V, Salazar G . (2004). The A-type cyclins and the meiotic cell cycle in mammalian male germ cells. Int J Androl 27: 192–199.

    Article  CAS  Google Scholar 

  • Xie P, Chan FS, Ip NY, Leung M . (2000). Nerve growth factor potentiated the sodium butyrate- and PMA-induced megakaryocytic differentiation of K562 leukemia cells. Leuk Res 24: 751–759.

    Article  CAS  Google Scholar 

  • Xie P, Cheung WM, Ip FC, Ip NY, Leung MF . (1997). Induction of TrkA receptor by retinoic acid in leukaemia cell lines. Neuroreport 8: 1067–1070.

    Article  CAS  Google Scholar 

  • Xu X, Liu Y, Wang L, He J, Zhang H, Chen X et al. (2009). Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells. Int J Dermatol 48: 186–192.

    Article  CAS  Google Scholar 

  • Yang R, Morosetti R, Koeffler HP . (1997). Characterization of a second human cyclin A that is highly expressed in testis and in several leukemic cell lines. Cancer Res 57: 913–920.

    CAS  PubMed  Google Scholar 

  • Yang R, Nakamaki T, Lubbert M, Said J, Sakashita A, Freyaldenhoven BS et al. (1999). Cyclin A1 expression in leukemia and normal hematopoietic cells. Blood 93: 2067–2074.

    CAS  Google Scholar 

  • Ye K, Compton DA, Lai MM, Walensky LD, Snyder SH . (1999). Protein 4.1N binding to nuclear mitotic apparatus protein in PC12 cells mediates the antiproliferative actions of nerve growth factor. J Neurosci 19: 10747–10756.

    Article  CAS  Google Scholar 

  • Ying W, Alano CC, Garnier P, Swanson RA . (2005). NAD+ as a metabolic link between DNA damage and cell death. J Neurosci Res 79: 216–223.

    Article  CAS  Google Scholar 

  • Zhang Q, Piston DW, Goodman RH . (2002). Regulation of corepressor function by nuclear NADH. Science 295: 1895–1897.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from NIH (RO1 NS060680) to K Ye. We thank Dr G Chinnadurai (Saint Louis University Health Sciences Center) for GST-CtBP1 plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, C., Liu, X., Jang, SW. et al. NGF inhibits human leukemia proliferation by downregulating cyclin A1 expression through promoting acinus/CtBP2 association. Oncogene 28, 3825–3836 (2009). https://doi.org/10.1038/onc.2009.236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.236

Keywords

This article is cited by

Search

Quick links