Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Autocrine semaphorin 3A signaling promotes glioblastoma dispersal

Abstract

Glioblastoma multiforme (GBM) is the most malignant glioma type with diffuse borders due to extensive tumor cell infiltration. Therefore, understanding the mechanism of GBM cell dispersal is critical for developing effective therapies to limit infiltration. We identified neuropilin-1 as a mediator of cancer cell invasion by a functional proteomic screen and showed its role in GBM cells. Neuropilin-1 is a receptor for semaphorin3A (Sema3A), a secreted chemorepellent that facilitates axon guidance during neural development. Although neuropilin-1 expression in GBMs was previously shown, its role as a Sema3A receptor remained elusive. Using fluorophore-assisted light inactivation and RNA interference , we showed that neuropilin-1 is required for GBM cell migration. We also showed that GBM cells secrete Sema3A endogenously, and RNA interference-mediated downregulation of Sema3A inhibits migration and alters cell morphology that is dependent on Rac1 activity. Sema3A depletion also reduces dispersal, which is recovered by supplying Sema3A exogenously. Extracellular application of Sema3A decreases cell-substrate adhesion in a neuropilin-1-dependent manner. Using immunohistochemistry, we showed that Sema3A is overexpressed in a subset of human GBMs compared with the non-neoplastic brain. Together, these findings implicate Sema3A as an autocrine signal for neuropilin-1 to promote GBM dispersal by modulating substrate adhesion and suggest that targeting Sema3A-neuropilin-1 signaling may limit GBM infiltration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bachelder RE, Crago A, Chung J, Wendt MA, Shaw LM, Robinson G et al. (2001). Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res 61: 5736–5740.

    CAS  PubMed  Google Scholar 

  • Bachelder RE, Lipscomb EA, Lin X, Wendt MA, Chadborn NH, Eickholt BJ et al. (2003). Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer Res 63: 5230–5233.

    CAS  PubMed  Google Scholar 

  • Beck S, Sakurai T, Eustace BK, Beste G, Schier R, Rudert F et al. (2002). Fluorophore-assisted light inactivation: a high-throughput tool for direct target validation of proteins. Proteomics 2: 247–255.

    Article  CAS  Google Scholar 

  • Berens ME, Giese A . (1999). ‘…those left behind.’ Biology and oncology of invasive glioma cells. Neoplasia 1: 208–219.

    Article  CAS  Google Scholar 

  • Broholm H, Laursen H . (2004). Vascular endothelial growth factor (VEGF) receptor neuropilin-1's distribution in astrocytic tumors. APMIS 112: 257–263.

    Article  CAS  Google Scholar 

  • Castellani V, Chedotal A, Schachner M, Faivre-Sarrailh C, Rougon G . (2000). Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 27: 237–249.

    Article  CAS  Google Scholar 

  • Castellani V, De Angelis E, Kenwrick S, Rougon G . (2002). Cis and trans interactions of L1 with neuropilin-1 control axonal responses to semaphorin 3A. EMBO J 21: 6348–6357.

    Article  CAS  Google Scholar 

  • Chen G, Sima J, Jin M, Wang KY, Xue XJ, Zheng W et al. (2008). Semaphorin-3A guides radial migration of cortical neurons during development. Nat Neurosci 11: 36–44.

    Article  Google Scholar 

  • Cox EA, Huttenlocher A . (1998). Regulation of integrin-mediated adhesion during cell migration. Microsc Res Tech 43: 412–419.

    Article  CAS  Google Scholar 

  • De Wit J, De Winter F, Klooster J, Verhaagen J . (2005). Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix. Mol Cell Neurosci 29: 40–55.

    Article  CAS  Google Scholar 

  • Del Duca D, Werbowetski T, Del Maestro RF . (2004). Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J Neurooncol 67: 295–303.

    Article  Google Scholar 

  • DiMilla PA, Stone JA, Quinn JA, Albelda SM, Lauffenburger DA . (1993). Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J Cell Biol 122: 729–737.

    Article  CAS  Google Scholar 

  • Ding H, Wu X, Roncari L, Lau N, Shannon P, Nagy A et al. (2000). Expression and regulation of neuropilin-1 in human astrocytomas. Int J Cancer 88: 584–592.

    Article  CAS  Google Scholar 

  • Ellis LM . (2006). The role of neuropilins in cancer. Mol Cancer Ther 5: 1099–1107.

    Article  CAS  Google Scholar 

  • Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C et al. (2004). Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6: 507–514.

    Article  CAS  Google Scholar 

  • Fukahi K, Fukasawa M, Neufeld G, Itakura J, Korc M . (2004). Aberrant expression of neuropilin-1 and -2 in human pancreatic cancer cells. Clin Cancer Res 10: 581–590.

    Article  CAS  Google Scholar 

  • Guo W, Giancotti FG . (2004). Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5: 816–826.

    Article  CAS  Google Scholar 

  • Halloran MC, Wolman MA . (2006). Repulsion or adhesion: receptors make the call. Curr Opin Cell Biol 18: 533–540.

    Article  CAS  Google Scholar 

  • Hoelzinger DB, Demuth T, Berens ME . (2007). Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99: 1583–1593.

    Article  CAS  Google Scholar 

  • Holland EC . (2001). Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2: 120–129.

    Article  CAS  Google Scholar 

  • Hu B, Guo P, Bar-Joseph I, Imanishi Y, Jarzynka MJ, Bogler O et al. (2007). Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene 26: 5577–5586.

    Article  CAS  Google Scholar 

  • Kawakami T, Tokunaga T, Hatanaka H, Kijima H, Yamazaki H, Abe Y et al. (2002). Neuropilin 1 and neuropilin 2 co-expression is significantly correlated with increased vascularity and poor prognosis in nonsmall cell lung carcinoma. Cancer 95: 2196–2201.

    Article  CAS  Google Scholar 

  • Klagsbrun M, Takashima S, Mamluk R . (2002). The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol 515: 33–48.

    Article  CAS  Google Scholar 

  • Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD . (1997). Neuropilin is a semaphorin III receptor. Cell 90: 753–762.

    Article  CAS  Google Scholar 

  • Kreuter M, Woelke K, Bieker R, Schliemann C, Steins M, Buechner T et al. (2006). Correlation of neuropilin-1 overexpression to survival in acute myeloid leukemia. Leukemia 20: 1950–1954.

    Article  CAS  Google Scholar 

  • Lee P, Goishi K, Davidson AJ, Mannix R, Zon L, Klagsbrun M . (2002). Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proc Natl Acad Sci USA 99: 10470–10475.

    Article  CAS  Google Scholar 

  • Li M, Yang H, Chai H, Fisher WE, Wang X, Brunicardi FC et al. (2004). Pancreatic carcinoma cells express neuropilins and vascular endothelial growth factor, but not vascular endothelial growth factor receptors. Cancer 101: 2341–2350.

    Article  CAS  Google Scholar 

  • Mertsch S, Schmitz N, Jeibmann A, Geng JG, Paulus W, Senner V . (2008). Slit2 involvement in glioma cell migration is mediated by Robo1 receptor. J Neurooncol 87: 1–7.

    Article  CAS  Google Scholar 

  • Miao HQ, Lee P, Lin H, Soker S, Klagsbrun M . (2000). Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB J 14: 2532–2539.

    Article  CAS  Google Scholar 

  • Muller MW, Giese NA, Swiercz JM, Ceyhan GO, Esposito I, Hinz U et al. (2007). Association of axon guidance factor semaphorin 3A with poor outcome in pancreatic cancer. Int J Cancer 121: 2421–2433.

    Article  Google Scholar 

  • Nakada M, Drake KL, Nakada S, Niska JA, Berens ME . (2006). Ephrin-B3 ligand promotes glioma invasion through activation of Rac1. Cancer Res 66: 8492–8500.

    Article  CAS  Google Scholar 

  • Nakada M, Niska JA, Miyamori H, McDonough WS, Wu J, Sato H et al. (2004). The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Cancer Res 64: 3179–3185.

    Article  CAS  Google Scholar 

  • Nobes CD, Hall A . (1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144: 1235–1244.

    Article  CAS  Google Scholar 

  • Okada H, Yoshida J, Sokabe M, Wakabayashi T, Hagiwara M . (1996). Suppression of CD44 expression decreases migration and invasion of human glioma cells. Int J Cancer 66: 255–260.

    Article  CAS  Google Scholar 

  • Osada H, Tokunaga T, Nishi M, Hatanaka H, Abe Y, Tsugu A et al. (2004). Overexpression of the neuropilin 1 (NRP1) gene correlated with poor prognosis in human glioma. Anticancer Res 24: 547–552.

    CAS  PubMed  Google Scholar 

  • Pan Q, Chanthery Y, Liang WC, Stawicki S, Mak J, Rathore N et al. (2007). Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11: 53–67.

    Article  CAS  Google Scholar 

  • Parikh AA, Fan F, Liu WB, Ahmad SA, Stoeltzing O, Reinmuth N et al. (2004). Neuropilin-1 in human colon cancer: expression, regulation, and role in induction of angiogenesis. Am J Pathol 164: 2139–2151.

    Article  CAS  Google Scholar 

  • Polleux F, Morrow T, Ghosh A . (2000). Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404: 567–573.

    Article  CAS  Google Scholar 

  • Raper JA . (2000). Semaphorins and their receptors in vertebrates and invertebrates. Curr Opin Neurobiol 10: 88–94.

    Article  CAS  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G et al. (2003). Cell migration: integrating signals from front to back. Science 302: 1704–1709.

    Article  CAS  Google Scholar 

  • Rieger J, Wick W, Weller M . (2003). Human malignant glioma cells express semaphorins and their receptors, neuropilins and plexins. Glia 42: 379–389.

    Article  Google Scholar 

  • Roche J, Drabkin H, Brambilla E . (2002). Neuropilin and its ligands in normal lung and cancer. Adv Exp Med Biol 515: 103–114.

    Article  CAS  Google Scholar 

  • Rossignol M, Gagnon ML, Klagsbrun M . (2000). Genomic organization of human neuropilin-1 and neuropilin-2 genes: identification and distribution of splice variants and soluble isoforms. Genomics 70: 211–222.

    Article  CAS  Google Scholar 

  • Roush W . (1998). Receptor links blood vessels, axons. Science 279: 2042.

    Article  CAS  Google Scholar 

  • Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F et al. (2003). Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 424: 391–397.

    Article  CAS  Google Scholar 

  • Sloan KE, Eustace BK, Stewart JK, Zehetmeier C, Torella C, Simeone M et al. (2004). CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer 4: 73.

    Article  Google Scholar 

  • Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M . (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92: 735–745.

    Article  CAS  Google Scholar 

  • Song H, Ming G, He Z, Lehmann M, McKerracher L, Tessier-Lavigne M et al. (1998). Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281: 1515–1518.

    Article  CAS  Google Scholar 

  • Staton CA, Kumar I, Reed MW, Brown NJ . (2007). Neuropilins in physiological and pathological angiogenesis. J Pathol 212: 237–248.

    Article  CAS  Google Scholar 

  • Subauste MC, Von Herrath M, Benard V, Chamberlain CE, Chuang TH, Chu K et al. (2000). Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J Biol Chem 275: 9725–9733.

    Article  CAS  Google Scholar 

  • Tran TS, Kolodkin AL, Bharadwaj R . (2007). Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 23: 263–292.

    Article  CAS  Google Scholar 

  • Turner LJ, Nicholls S, Hall A . (2004). The activity of the plexin-A1 receptor is regulated by Rac. J Biol Chem 279: 33199–33205.

    Article  CAS  Google Scholar 

  • Vales A, Kondo R, Aichberger KJ, Mayerhofer M, Kainz B, Sperr WR et al. (2007). Myeloid leukemias express a broad spectrum of VEGF receptors including neuropilin-1 (NRP-1) and NRP-2. Leuk Lymphoma 48: 1997–2007.

    Article  CAS  Google Scholar 

  • Vanveldhuizen PJ, Zulfiqar M, Banerjee S, Cherian R, Saxena NK, Rabe A et al. (2003). Differential expression of neuropilin-1 in malignant and benign prostatic stromal tissue. Oncol Rep 10: 1067–1071.

    CAS  PubMed  Google Scholar 

  • Wey JS, Gray MJ, Fan F, Belcheva A, McCarty MF, Stoeltzing O et al. (2005). Overexpression of neuropilin-1 promotes constitutive MAPK signalling and chemoresistance in pancreatic cancer cells. Br J Cancer 93: 233–241.

    Article  CAS  Google Scholar 

  • Zhou Y, Gunput RA, Pasterkamp RJ . (2008). Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci 33: 161–170.

    Article  CAS  Google Scholar 

  • Ziegler WH, Liddington RC, Critchley DR . (2006). The structure and regulation of vinculin. Trends Cell Biol 16: 453–460.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alex Kolodkin (Johns Hopkins School of Medicine) for kindly providing function blocking anti-Nrp-1 antibody; Jean Stewart, Dean Yimlamai and Jennifer Salluzzo for technical help; Sonya Craig for discussions about the adhesion assay; Brenda Eustace for assistance with the invasion screen; Pat Hibberd for help with the statistical analysis; Laura Liscum, Tamer Onder and Jessica McCready for critically reading the paper. This work was supported by the Goldhirsh Foundation and the NIH, RO1 CA 116642.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D G Jay.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagci, T., Wu, J., Pfannl, R. et al. Autocrine semaphorin 3A signaling promotes glioblastoma dispersal. Oncogene 28, 3537–3550 (2009). https://doi.org/10.1038/onc.2009.204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.204

Keywords

This article is cited by

Search

Quick links