Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells

Abstract

Breast tumor interleukin-6 (IL-6) levels increase with tumor grade, and elevated serum IL-6 correlates with poor breast cancer patient survival. Epithelial–mesenchymal transition (EMT) phenotypes such as impaired E-cadherin expression or aberrant Vimentin induction are associated with enhanced metastasis and unfavorable clinical outcome in breast cancer. Despite this fact, few tumor microenvironment-derived extracellular signaling factors capable of provoking such a phenotypic transition have been identified. In this study, we showed that IL-6 promoted E-cadherin repression among a panel of estrogen receptor-α-positive human breast cancer cells. Furthermore, ectopic stable IL-6 expressing MCF-7 breast adenocarcinoma cells (MCF-7IL−6) exhibited an EMT phenotype characterized by impaired E-cadherin expression and induction of Vimentin, N-cadherin, Snail and Twist. MCF-7IL−6 cells formed xenograft tumors that displayed loss of E-cadherin, robust Vimentin induction, increased proliferative indices, advanced tumor grade and undifferentiated histology. Finally, we showed aberrant IL-6 production and STAT3 activation in MCF-7 cells that constitutively express Twist, a metastatic regulator and direct transcriptional repressor of E-cadherin. To our knowledge, this is the first study that shows IL-6 as an inducer of an EMT phenotype in breast cancer cells and implicates its potential to promote breast cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bachelot T, Ray-Coquard I, Menetrier-Caux C, Rastkha M, Duc A, Blay JY . (2003). Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br J Cancer 88: 1721–1726.

    Article  CAS  PubMed Central  Google Scholar 

  • Barton BE, Karras JG, Murphy TF, Barton A, Huang HF . (2004). Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol Cancer Ther 3: 11–20.

    Article  CAS  Google Scholar 

  • Blaskovich MA, Sun J, Cantor A, Turkson J, Jove R, Sebti SM . (2003). Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 63: 1270–1279.

    CAS  PubMed  Google Scholar 

  • Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissiere F, Laune D et al. (2007). Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res 9: R15.

    Article  PubMed Central  Google Scholar 

  • Cheng GZ, Zhang WZ, Sun M, Wang Q, Coppola D, Mansour M et al. (2008). Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function. J Biol Chem 283: 14665–14673.

    Article  CAS  PubMed Central  Google Scholar 

  • Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P et al. (2001). Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res 61: 8851–8858.

    CAS  PubMed  Google Scholar 

  • Elston CW, Ellis IO . (1991). Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19: 403–410.

    Article  CAS  PubMed Central  Google Scholar 

  • Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, Huang M et al. (2006). Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 12: 11–19.

    Article  CAS  Google Scholar 

  • Heimann R, Hellman S . (2000). Individual characterisation of the metastatic capacity of human breast carcinoma. Eur J Cancer 36: 1631–1639.

    Article  CAS  Google Scholar 

  • Jiang XP, Yang DC, Elliott RL, Head JF . (2000). Reduction in serum IL-6 after vacination of breast cancer patients with tumour-associated antigens is related to estrogen receptor status. Cytokine 12: 458–465.

    Article  CAS  Google Scholar 

  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449: 557–563.

    Article  CAS  PubMed Central  Google Scholar 

  • Kishimoto T . (2006). Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther 8: S2.

    Article  PubMed Central  Google Scholar 

  • Kozlowski L, Zakrzewska I, Tokajuk P, Wojtukiewicz MZ . (2003). Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Rocz Akad Med Bialymst 48: 82–84.

    CAS  PubMed  Google Scholar 

  • Lebret SC, Newgreen DF, Thompson EW, Ackland ML . (2007). Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors. Breast Cancer Res 9: R19.

    Article  PubMed Central  Google Scholar 

  • Lin Q, Lai R, Chirieac LR, Li C, Thomazy VA, Grammatikakis I et al. (2005). Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol 167: 969–980.

    Article  CAS  PubMed Central  Google Scholar 

  • Massague J . (2008). TGFbeta in cancer. Cell 134: 215–230.

    Article  CAS  PubMed Central  Google Scholar 

  • Mironchik Y, Winnard Jr PT, Vesuna F, Kato Y, Wildes F, Pathak AP et al. (2005). Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res 65: 10801–10809.

    Article  CAS  PubMed Central  Google Scholar 

  • Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ et al. (2005). The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8: 197–209.

    Article  CAS  Google Scholar 

  • Naugler WE, Karin M . (2008). The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 14: 109–119.

    Article  CAS  Google Scholar 

  • Nicolini A, Carpi A, Rossi G . (2006). Cytokines in breast cancer. Cytokine Growth Factor Rev 17: 325–337.

    Article  CAS  Google Scholar 

  • Oka H, Shiozaki H, Kobayashi K, Inoue M, Tahara H, Kobayashi T et al. (1993). Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res 53: 1696–1701.

    CAS  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell 8: 241–254.

    Article  CAS  Google Scholar 

  • Pedersen KB, Nesland JM, Fodstad O, Maelandsmo GM . (2002). Expression of S100A4, E-cadherin, alpha- and beta-catenin in breast cancer biopsies. Br J Cancer 87: 1281–1286.

    Article  CAS  PubMed Central  Google Scholar 

  • Salgado R, Junius S, Benoy I, Van Dam P, Vermeulen P, Van Marck E et al. (2003). Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer 103: 642–646.

    Article  CAS  PubMed Central  Google Scholar 

  • Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M et al. (2007). IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117: 3988–4002.

    Article  CAS  PubMed Central  Google Scholar 

  • Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J . (2008). Epithelial–mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68: 989–997.

    Article  CAS  PubMed Central  Google Scholar 

  • Sasser AK, Mundy BL, Smith KM, Studebaker AW, Axel AE, Haidet AM et al. (2007a). Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Lett 254: 255–264.

    Article  CAS  Google Scholar 

  • Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE, Hall BM . (2007b). Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J 21: 3763–3770.

    Article  CAS  Google Scholar 

  • Singh A, Purohit A, Ghilchik MW, Reed MJ . (1999). The regulation of aromatase activity in breast fibroblasts: the role of interleukin-6 and prostaglandin E2. Endocr Relat Cancer 6: 139–147.

    Article  CAS  Google Scholar 

  • Studebaker AW, Storci G, Werbeck JL, Sansone P, Sasser AK, Tavolari S et al. (2008). Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res 68: 9087–9095.

    Article  CAS  Google Scholar 

  • Thiery JP . (2002). Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  Google Scholar 

  • Thiery JP, Sleeman JP . (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142.

    Article  CAS  Google Scholar 

  • Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A . (2006). Transforming growth factor-beta employs HMGA2 to elicit epithelial–mesenchymal transition. J Cell Biol 174: 175–183.

    Article  CAS  PubMed Central  Google Scholar 

  • van Dam M, Mullberg J, Schooltink H, Stoyan T, Brakenhoff JP, Graeve L et al. (1993). Structure-function analysis of interleukin-6 utilizing human/murine chimeric molecules. Involvement of two separate domains in receptor binding. J Biol Chem 268: 15285–15290.

    CAS  PubMed  Google Scholar 

  • Waerner T, Alacakaptan M, Tamir I, Oberauer R, Gal A, Brabletz T et al. (2006). ILEI: a cytokine essential for EMT, tumor formation, and late events in metastasis in epithelial cells. Cancer Cell 10: 227–239.

    Article  CAS  Google Scholar 

  • Yang J, Weinberg RA . (2008). Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14: 818–829.

    Article  CAS  Google Scholar 

  • Zhang GJ, Adachi I . (1999). Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res 19: 1427–1432.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the generous support of the Elsa U Pardee Foundation (BH), the American Cancer Society-Ohio Division (BH) and The Research Institute at Nationwide Children's Hospital (BH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T M Oberyszyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, N., Sasser, A., Axel, A. et al. Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene 28, 2940–2947 (2009). https://doi.org/10.1038/onc.2009.180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.180

Keywords

This article is cited by

Search

Quick links