Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms

Abstract

After a decade of extensive work on gene knockout mouse models of cell-cycle regulators, the classical model of cell-cycle regulation was seriously challenged. Several unexpected compensatory mechanisms were uncovered among cyclins and Cdks in these studies. The most astonishing observation is that Cdk2 is dispensable for the regulation of the mitotic cell cycle with both Cdk4 and Cdk1 covering for Cdk2's functions. Similar to yeast, it was recently discovered that Cdk1 alone can drive the mammalian cell cycle, indicating that the regulation of the mammalian cell cycle is highly conserved. Nevertheless, cell–cycle-independent functions of Cdks and cyclins such as in DNA damage repair are still under investigation. Here we review the compensatory mechanisms among major cyclins and Cdks in mammalian cell-cycle regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Akoulitchev S, Chuikov S, Reinberg D . (2000). TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407: 102–106.

    Article  CAS  PubMed  Google Scholar 

  • Alao JP, Gamble SC, Stavropoulou AV, Pomeranz KM, Lam EW, Coombes RC et al. (2006). The cyclin D1 proto-oncogene is sequestered in the cytoplasm of mammalian cancer cell lines. Mol Cancer 5: 7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aleem E, Kiyokawa H, Kaldis P . (2005). Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol 7: 831–836.

    Article  CAS  PubMed  Google Scholar 

  • Aprelikova O, Xiong Y, Liu ET . (1995). Both p16 and p21 families of cyclin-dependent kinase (CDK) inhibitors block the phosphorylation of cyclin-dependent kinases by the CDK-activating kinase. J Biol Chem 270: 18195–18197.

    Article  CAS  PubMed  Google Scholar 

  • Argraves WS, Drake CJ . (2005). Genes critical to vasculogenesis as defined by systematic analysis of vascular defects in knockout mice. Anat Rec A Discov Mol Cell Evol Biol 286: 875–884.

    Article  PubMed  CAS  Google Scholar 

  • Bai C, Richman R, Elledge SJ . (1994). Human cyclin F. EMBO J 13: 6087–6098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW et al. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86: 263–274.

    Article  CAS  PubMed  Google Scholar 

  • Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P . (2003). Cdk2 knockout mice are viable. Curr Biol 13: 1775–1785.

    Article  CAS  PubMed  Google Scholar 

  • Berthet C, Klarmann KD, Hilton MB, Suh HC, Keller JR, Kiyokawa H et al. (2006). Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell 10: 563–573.

    Article  CAS  PubMed  Google Scholar 

  • Brandeis M, Rosewell I, Carrington M, Crompton T, Jacobs AM, Kirk J et al. (1998). Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci USA 95: 4344–4349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carthon BC, Neumann CA, Das M, Pawlyk B, Li T, Geng Y et al. (2005). Genetic replacement of cyclin D1 function in mouse development by cyclin D2. Mol Cell Biol 25: 1081–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman DL, Wolgemuth DJ . (1992). Identification of a mouse B-type cyclin which exhibits developmentally regulated expression in the germ line. Mol Reprod Dev 33: 259–269.

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM et al. (1999). The p21Cip1 and p27Kip1 CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18: 1571–1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung ZH, Fu AK, Ip NY . (2006). Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases. Neuron 50: 13–18.

    Article  CAS  PubMed  Google Scholar 

  • Ciemerych MA, Kenney AM, Sicinska E, Kalaszczynska I, Bronson RT, Rowitch DH et al. (2002). Development of mice expressing a single D-type cyclin. Genes Dev 16: 3277–3289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coqueret O . (2003). New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13: 65–70.

    Article  CAS  PubMed  Google Scholar 

  • Coverley D, Pelizon C, Trewick S, Laseky RA . (2000). Chromatin-bound Cdc6 persists in S and G2 phases in human cells, while soluble Cdc6 is destroyed in a cyclin A-cdk2 dependent process. J Cell Sci 113: 1929–1938.

    Article  CAS  PubMed  Google Scholar 

  • Cruz JC, Tsai LH . (2004). Cdk5 deregulation in the pathogenesis of Alzheimer's disease. Trends Mol Med 10: 452–458.

    Article  CAS  PubMed  Google Scholar 

  • Dhar KK, Branigan K, Parkes J, Howells RE, Hand P, Musgrove C et al. (1999). Expression and subcellular localization of cyclin D1 protein in epithelial ovarian tumour cells. Br J Cancer 81: 1174–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhavan R, Greer PL, Morabito MA, Orlando LR, Tsai LH . (2002). The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha-actinin-1 in a calcium-dependent manner. J Neurosci 22: 7879–7891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhavan R, Tsai LH . (2001). A decade of CDK5. Nat Rev Mol Cell Biol 2: 749–759.

    Article  CAS  PubMed  Google Scholar 

  • Draetta G, Luca F, Westendorf J, Brizuela L, Ruderman J, Beach D . (1989). Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell 56: 829–838.

    Article  CAS  PubMed  Google Scholar 

  • Draviam VM, Orrechia S, Lowe M, Pardi R, Pines J . (2001). The localization of human cyclins B1 and B2 determines CDK1 substrate specificity and neither enzyme requires MEK to disassemble the Golgi apparatus. J Cell Biol 152: 945–958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duensing A, Liu Y, Tseng M, Malumbres M, Barbacid M, Duensing S . (2006). Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene 25: 2943–2949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyson N . (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  • Ericson KK, Krull D, Slomiany P, Grossel MJ . (2003). Expression of cyclin-dependent kinase 6, but not cyclin-dependent kinase 4, alters morphology of cultured mouse astrocytes. Mol Cancer Res 1: 654–664.

    CAS  PubMed  Google Scholar 

  • Fahraeus R, Lane DP . (1999). The p16INK4a tumour suppressor protein inhibits alphavbeta3 integrin-mediated cell spreading on vitronectin by blocking PKC-dependent localization of alphavbeta3 to focal contacts. EMBO J 18: 2106–2118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C . (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 9: 2364–2372.

    Article  CAS  PubMed  Google Scholar 

  • Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD . (1994). Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79: 1103–1109.

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH . (2005). Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron 48: 825–838.

    Article  CAS  PubMed  Google Scholar 

  • Fisher RP . (2005). Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 118: 5171–5180.

    Article  CAS  PubMed  Google Scholar 

  • Fisher RP, Morgan DO . (1994). A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78: 713–724.

    Article  CAS  PubMed  Google Scholar 

  • Fisher RP, Morgan DO . (1996). CAK in TFIIH: crucial connection or confounding coincidence? Biochim Biophys Acta 1288: O7–O10.

    PubMed  Google Scholar 

  • Franklin DS, Godfrey VL, O′Brien DA, Deng C, Xiong Y . (2000). Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 20: 6147–6158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuno N, den Elzen N, Pines J . (1999). Human cyclin A is required for mitosis until mid prophase. J Cell Biol 147: 295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallant P, Nigg EA . (1992). Cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells. J Cell Biol 117: 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Gallant P, Nigg EA . (1994). Identification of a novel vertebrate cyclin: cyclin B3 shares properties with both A- and B-type cyclins. EMBO J 13: 595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng Y, Whoriskey W, Park MY, Bronson RT, Medema RH, Li T et al. (1999). Rescue of cyclin D1 deficiency by knockin cyclin E. Cell 97: 767–777.

    Article  CAS  PubMed  Google Scholar 

  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S et al. 2003)). Cyclin E ablation in the mouse. Cell 114: 431–443.

    Article  CAS  PubMed  Google Scholar 

  • Girard F, Strausfeld U, Fernandez A, Lamb NJ . (1991). Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67: 1169–1179.

    Article  CAS  PubMed  Google Scholar 

  • Goodrich JA, Tjian R . (1994). Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77: 145–156.

    Article  CAS  PubMed  Google Scholar 

  • Grossel MJ, Hinds PW . (2006). Beyond the cell cycle: a new role for Cdk6 in differentiation. J Cell Biochem 97: 485–493.

    Article  CAS  PubMed  Google Scholar 

  • Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G . (1999). Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283: 851–854.

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Mayeda A, Trembley JH, Lahti JM, Kidd VJ . (2003). CDK11 complexes promote pre-mRNA splicing. J Biol Chem 278: 8623–8629.

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Friesen H, Andrews B . (2007). Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast. Mol Microbiol 66: 303–314.

    Article  CAS  PubMed  Google Scholar 

  • Huard JM, Forster CC, Carter ML, Sicinski P, Ross ME . (1999). Cerebellar histogenesis is disturbed in mice lacking cyclin D2. Development 126: 1927–1935.

    Article  CAS  PubMed  Google Scholar 

  • Jablonska B, Aguirre A, Vandenbosch R, Belachew S, Berthet C, Kaldis P et al. (2007). Cdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone. J Cell Biol 179: 1231–1245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackman M, Firth M, Pines J . (1995). Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. EMBO J 14: 1646–1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang MJ, Kim MK, Terhune A, Park JK, Kim YH, Koh GY . (1997). Cytoplasmic localization of cyclin D3 in seminiferous tubules during testicular development. Exp Cell Res 234: 27–36.

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk A, Filipkowski RK, Rylski M, Wilczynski GM, Konopacki FA, Jaworski J et al. (2004). The critical role of cyclin D2 in adult neurogenesis. J Cell Biol 167: 209–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E et al. (2004). Mouse development and cell proliferation in the absence of D-cyclins. Cell 118: 477–491.

    Article  CAS  PubMed  Google Scholar 

  • Larochelle S, Pandur J, Fisher RP, Salz HK, Suter B . (1998). Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity. Genes Dev 12: 370–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latres E, Malumbres M, Sotillo R, Martin J, Ortega S, Martin-Caballero J et al. (2000). Limited overlapping roles of P15INK4b and P18INK4c cell cycle inhibitors in proliferation and tumorigenesis. EMBO J 19: 3496–3506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Inoue A, Lahti JM, Kidd VJ . (2004). Failure to proliferate and mitotic arrest of CDK11(p110/p58)-null mutant mice at the blastocyst stage of embryonic cell development. Mol Cell Biol 24: 3188–3197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Matzuk MM, Sung WK, Guo Q, Wang P, Wolgemuth DJ . (1998). Cyclin A1 is required for meiosis in the male mouse. Nat Genet 20: 377–380.

    Article  CAS  PubMed  Google Scholar 

  • Loyer P, Trembley JH, Lathi JM, Kidd VJ . (1998). The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2-related PITSLRE protein kinase in vivo. J Cell Sci 111: 1495–1506.

    Article  CAS  PubMed  Google Scholar 

  • Lozano JC, Perret E, Schatt P, Arnould C, Peaucellier G, Picard A . (2002). Molecular cloning, gene localization, and structure of human cyclin B3. Biochem Biophys Res Commun 291: 406–413.

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Zawel L, Fisher L, Egly JM, Reinberg D . (1992). Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 358: 641–645.

    Article  CAS  PubMed  Google Scholar 

  • Lundberg AS, Weinberg RA . (1998). Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 18: 753–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahony D, Parry D, Lees E . (1998). Active cdk6 complexes are predominantly nuclear and represent only a minority of the cdk6 in T cells. Oncogene 16: 603–611.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S et al. (2004). Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118: 493–504.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Maller JL . (2004). A centrosomal localization signal in cyclin E required for Cdk2-independent S phase entry. Science 306: 885–888.

    Article  CAS  PubMed  Google Scholar 

  • Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA . (1999). Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol 1: 88–93.

    Article  CAS  PubMed  Google Scholar 

  • Minella AC, Loeb KR, Knecht A, Welcker M, Varnum-Finney BJ, Bernstein ID et al. (2008). Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo. Genes Dev 22: 1677–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JD, Yang J, Truant R, Kornbluth S . (1999). Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J Cell Biol 144: 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan DO . (1997). Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13: 261–291.

    Article  CAS  PubMed  Google Scholar 

  • Murphy M, Stinnakre M-G, Senamaud-Beaufort C, Winston NJ, Sweeney C, Kubelka M et al. (1997). Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nat Genet 15: 83–86.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TB, Manova K, Capodieci P, Lindon C, Bottega S, Wang XY et al. (2002). Characterization and expression of mammalian cyclin b3, a prepachytene meiotic cyclin. J Biol Chem 277: 41960–41969.

    Article  CAS  PubMed  Google Scholar 

  • Nieduszynski CA, Murray J, Carrington M . (2002). Whole-genome analysis of animal A- and B-type cyclins. Genome Biol 3: RESEARCH0070.

    Article  PubMed  PubMed Central  Google Scholar 

  • O'Connor PM . (1997). Mammalian G1 and G2 phase checkpoints. Cancer Surv 29: 151–182.

    CAS  PubMed  Google Scholar 

  • Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna, Pant HC et al. (1996). Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93: 11173–11178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M . (1995). Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 15: 2612–2624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ookata K, Hisanaga S, Okumura E, Kishimoto T . (1993). Association of p34cdc2/cyclin B complex with microtubules in starfish oocytes. J Cell Sci 105(Pt 4): 873–881.

    Article  CAS  PubMed  Google Scholar 

  • Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R et al. (2003). Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35: 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Pagano M, Jackson PK . (2004). Wagging the dogma; tissue-specific cell cycle control in the mouse embryo. Cell 118: 535–538.

    Article  CAS  PubMed  Google Scholar 

  • Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G . (1992). Cyclin A is required at two points in the human cell cycle. EMBO J 11: 961–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parekh V, McEwen A, Barbour V, Takahashi Y, Rehg JE, Jane SM et al. (2004). Defective extraembryonic angiogenesis in mice lacking LBP-1a, a member of the grainyhead family of transcription factors. Mol Cell Biol 24: 7113–7129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parisi T, Beck AR, Rougier N, McNeil T, Lucian L, Werb Z et al. (2003). Cyclins E1 and E2 are required for endoreplication in placental trophoblast giant cells. EMBO J 22: 4794–4803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen BO, Lukas J, Sorensen CS, Bartek J, Helin K . (1999). Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J 18: 396–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pines J, Hunter T . (1989). Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58: 833–846.

    Article  CAS  PubMed  Google Scholar 

  • Pines J, Hunter T . (1991). Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 115: 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Pines J, Hunter T . (1994). The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B. EMBO J 13: 3772–3781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogoriler J, Millen K, Utset M, Du W . (2006). Loss of cyclin D1 impairs cerebellar development and suppresses medulloblastoma formation. Development 133: 3929–3937.

    Article  CAS  PubMed  Google Scholar 

  • Qu D, Rashidian J, Mount MP, Aleyasin H, Parsanejad M, Lira A et al. (2007). Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease. Neuron 55: 37–52.

    Article  CAS  PubMed  Google Scholar 

  • Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP et al. (1999). Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22: 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Ravnik SE, Wolgemuth DJ . (1999). Regulation of meiosis during mammalian spermatogenesis: the A-type cyclins and their associated cyclin-dependent kinases are differentially expressed in the germ-cell lineage. Dev Biol 207: 408–418.

    Article  CAS  PubMed  Google Scholar 

  • Ren S, Rollins BJ . (2004). Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 117: 239–251.

    Article  CAS  PubMed  Google Scholar 

  • Resnitzky D, Hengst L, Reed SI . (1995). Cyclin A-associated kinase activity is rate limiting for entrance into S phase and is negatively regulated in G1 by p27Kip1. Mol Cell Biol 15: 4347–4352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riabowol K, Draetta G, Brizuela L, Vandre D, Beach D . (1989). The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 57: 393–401.

    Article  CAS  PubMed  Google Scholar 

  • Rossi DJ, Londesborough A, Korsisaari N, Pihlak A, Lehtonen E, Henkemeyer M et al. (2001). Inability to enter S phase and defective RNA polymerase II CTD phosphorylation in mice lacking Mat1. EMBO J 20: 2844–2856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs AB . (2000). Cell cycle-dependent translation initiation: IRES elements prevail. Cell 101: 243–245.

    Article  CAS  PubMed  Google Scholar 

  • Sage J . (2004). Cyclin C makes an entry into the cell cycle. Dev Cell 6: 607–608.

    Article  CAS  PubMed  Google Scholar 

  • Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T . (2003). Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424: 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Sano M, Schneider MD . (2003). Cyclins that don't cycle--cyclin T/cyclin-dependent kinase-9 determines cardiac muscle cell size. Cell Cycle 2: 99–104.

    Article  CAS  PubMed  Google Scholar 

  • Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K et al. (2007). Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448: 811–815.

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana A, Berthet C, Lopez-Molina J, Coppola V, Tessarollo L, Kaldis P . (2008a). Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2. Development 135: 3389–3400.

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana A, Hilton MB, Kaldis P . (2008b). p21 Inhibits Cdk1 in the absence of Cdk2 to maintain the G1/S phase DNA damage checkpoint. Mol Biol Cell 19: 65–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ . (1993). Mammalian G1 cyclins. Cell 73: 1059–1065.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (2004). Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18: 2699–2711.

    Article  CAS  PubMed  Google Scholar 

  • Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q et al. (2003). Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4: 451–461.

    Article  CAS  PubMed  Google Scholar 

  • Sicinski P, Donaher JL, B PS, Li T, Fazeli A, Gardner H et al. (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82: 621–630.

    Article  CAS  PubMed  Google Scholar 

  • Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY et al. (1996). Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384: 470–474.

    Article  CAS  PubMed  Google Scholar 

  • Solomon MJ, Booher R, Kirschner MW, Beach D . (1988). Cyclin in fission yeast. Cell 54: 738–740.

    Article  CAS  Google Scholar 

  • Solvason N, Wu WW, Parry D, Mahony D, Lam EW, Glassford J et al. (2000). Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. Int Immunol 12: 631–638.

    Article  CAS  PubMed  Google Scholar 

  • Sotillo R, Dubus P, Martin J, de la Cueva E, Ortega S, Malumbres M et al. (2001). Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. EMBO J 20: 6637–6647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susaki E, Nakayama K, Nakayama KI . (2007). Cyclin D2 translocates p27 out of the nucleus and promotes its degradation at the G0-G1 transition. Mol Cell Biol 27: 4626–4640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney C, Murphy M, Kubelka M, Ravnik SE, Hawkins CF, Wolgemuth DJ et al. (1996). A distinct cyclin A is expressed in germ cells in the mouse. Development 122: 53–64.

    Article  CAS  PubMed  Google Scholar 

  • Takaki T, Fukasawa K, Suzuki-Takahashi I, Semba K, Kitagawa M, Taya Y et al. (2005). Preferences for phosphorylation sites in the retinoblastoma protein of D-type cyclin-dependent kinases, Cdk4 and Cdk6, in vitro. J Biochem 137: 381–386.

    Article  CAS  PubMed  Google Scholar 

  • Tetzlaff MT, Bai C, Finegold M, Wilson J, Harper JW, Mahon KA et al. (2004). Cyclin F disruption compromises placental development and affects normal cell cycle execution. Mol Cell Biol 24: 2487–2498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Th'ng JP, Wright PS, Hamaguchi J, Lee MG, Norbury CJ, Nurse P et al. (1990). The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell 63: 313–324.

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima F, Moriguchi T, Wada A, Fukuda M, Nishida E . (1998). Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J 17: 2728–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoshima H, Hunter T . (1994). p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78: 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui T, Hesabi B, Moons DS, Pandolfi PP, Hansel KS, Koff A et al. (1999). Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol Cell Biol 19: 7011–7019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel S, Harlow E . (1993). Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262: 2050–2054.

    Article  CAS  PubMed  Google Scholar 

  • Waclaw RR, Chatot CL . (2004). Patterns of expression of cyclins A, B1, D, E and cdk 2 in preimplantation mouse embryos. Zygote 12: 19–30.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Fischer PM . (2008). Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol Sci 29: 302–313.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg RA . (1995). The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Winston N, Bourgain-Guglielmetti F, Ciemerych MA, Kubiak JZ, Senamaud-Beaufort C, Carrington M et al. (2000). Early development of mouse embryos null mutant for the cyclin A2 gene occurs in the absence of maternally derived cyclin A2 gene products. Dev Biol 223: 139–153.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, Kornbluth S . (1998). Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev 12: 2131–2143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda H, Kamijo M, Honda R, Nakamura M, Hanaoka F, Ohba Y . (1991). A point mutation in C-terminal region of cdc2 kinase causes a G2-phase arrest in a mouse temperature-sensitive FM3A cell mutant. Cell Struct Funct 16: 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Zhu C, Harper JW . (2001). A premature-termination mutation in the Mus musculus cyclin-dependent kinase 3 gene. Proc Natl Acad Sci USA 98: 1682–1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zindy F, Lamas E, Chenivesse X, Sobczak J, Wang J, Fesquet D et al. (1992). Cyclin A is required in S phase in normal epithelial cells. Biochem Biophys Res Commun 182: 1144–1154.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kaldis lab members for discussions and support. This research was supported by A*STAR of Singapore (PK) and the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research (AS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Satyanarayana or P Kaldis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satyanarayana, A., Kaldis, P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28, 2925–2939 (2009). https://doi.org/10.1038/onc.2009.170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.170

Keywords

This article is cited by

Search

Quick links