Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol

Abstract

The function of the class III histone deacetylase, Sir2, in promoting lifespan extension is well established in small model organisms. By analogy, SirT1, the mammalian orthologue of Sir2, is a candidate gene to slow down aging and forestall the onset of age-associated diseases. We have used SirT1-null mice to study the function of SirT1 in susceptibility to tumorigenesis. The number of intestinal polyps induced in mice carrying the Apcmin mutation was unaffected by the SirT1 genotype although the average polyp size was slightly smaller in the SirT1-null animals. Similarly, the presence or absence of SirT1 had no effect on incidence and tumor load of skin papillomas induced by the classical two-stage carcinogenesis protocol. We found that resveratrol topically applied to the skin profoundly reduced tumorigenesis. This chemoprotective effect was significantly reduced but not ablated in SirT1-null mice, suggesting that part of the protection afforded by resveratrol requires the SirT1-encoded protein. Thus, our results suggest that SirT1 does not behave like a classical tumor-suppressor gene but the antitumor activity of resveratrol is mediated at least in part by SirT1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abdelmohsen K, Pullmann Jr. R, Lal A, Kim HH, Galban S, Yang X et al. (2007). Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 25: 543–557.

    Article  CAS  Google Scholar 

  • Araki T, Sasaki Y, Milbrandt J . (2004). Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305: 1010–1013.

    Article  CAS  Google Scholar 

  • Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C et al. (2008). SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 3: e1759.

    Article  Google Scholar 

  • Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J et al. (2006). Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4: e31.

    Article  Google Scholar 

  • Borra MT, Smith BC, Denu JM . (2005). Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280: 17187–17195.

    Article  CAS  Google Scholar 

  • Bradbury CA, Khanim FL, Hayden R, Bunce CM, White DA, Drayson MT et al. (2005). Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19: 1751–1759.

    Article  CAS  Google Scholar 

  • Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S et al. (2005a). SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280: 40364–40374.

    Article  CAS  Google Scholar 

  • Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB . (2005b). Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123: 437–448.

    Article  CAS  Google Scholar 

  • Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P et al. (2003). Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100: 10794–10799.

    Article  CAS  Google Scholar 

  • Chua KF, Mostoslavsky R, Lombard DB, Pang WW, Saito S, Franco S et al. (2005). Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab 2: 67–76.

    Article  CAS  Google Scholar 

  • Cucciolla V, Borriello A, Oliva A, Galletti P, Zappia V, Della Ragione F . (2007). Resveratrol: from basic science to the clinic. Cell Cycle 6: 2495–2510.

    Article  CAS  Google Scholar 

  • Dai JM, Wang ZY, Sun DC, Lin RX, Wang SQ . (2007). SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J Cell Physiol 210: 161–166.

    Article  CAS  Google Scholar 

  • Duan C, Xu Q . (2005). Roles of insulin-like growth factor (IGF) binding proteins in regulating IGF actions. Gen Comp Endocrinol 142: 44–52.

    Article  CAS  Google Scholar 

  • Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J et al. (2008). The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3: e2020.

    Article  Google Scholar 

  • Ford J, Jiang M, Milner J . (2005). Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res 65: 10457–10463.

    Article  CAS  Google Scholar 

  • Fu M, Liu M, Sauve AA, Jiao X, Zhang X, Wu X et al. (2006). Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol 26: 8122–8135.

    Article  CAS  Google Scholar 

  • Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R et al. (2007). Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26: 1913–1923.

    Article  CAS  Google Scholar 

  • Hida Y, Kubo Y, Murao K, Arase S . (2007). Strong expression of a longevity-related protein, SIRT1, in Bowen's disease. Arch Dermatol Res 299: 103–106.

    Article  CAS  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191–196.

    Article  CAS  Google Scholar 

  • Huang J, Gan Q, Han L, Li J, Zhang H, Sun Y et al. (2008). SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS ONE 3: e1710.

    Article  Google Scholar 

  • Huffman DM, Grizzle WE, Bamman MM, Kim JS, Eltoum IA, Elgavish A et al. (2007). SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67: 6612–6618.

    Article  CAS  Google Scholar 

  • Jang KY, Hwang SH, Kwon KS, Kim KR, Choi HN, Lee NR et al. (2008). SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma. Am J Surg Pathol 32: 1523–1531.

    Article  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218–220.

    Article  CAS  Google Scholar 

  • Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD et al. (2005). Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280: 17038–17045.

    Article  CAS  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L . (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13: 2570–2580.

    Article  CAS  Google Scholar 

  • Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT et al. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 26: 3169–3179.

    Article  CAS  Google Scholar 

  • Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W et al. (2005). FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab 2: 153–163.

    Article  CAS  Google Scholar 

  • Kundu JK, Shin YK, Surh YJ . (2006). Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-kappaB and AP-1 as prime targets. Biochem Pharmacol 72: 1506–1515.

    Article  CAS  Google Scholar 

  • Kuzmichev A, Margueron R, Vaquero A, Preissner TS, Scher M, Kirmizis A et al. (2005). Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci USA 102: 1859–1864.

    Article  CAS  Google Scholar 

  • Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S et al. (2002). Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21: 2383–2396.

    Article  CAS  Google Scholar 

  • Lemieux ME, Yang X, Jardine K, He X, Jacobsen KX, Staines WA et al. (2005). The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals. Mech Ageing Dev 126: 1097–1105.

    Article  CAS  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L . (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289: 2126–2128.

    Article  CAS  Google Scholar 

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A et al. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107: 137–148.

    Article  CAS  Google Scholar 

  • McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR et al. (2003). The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 23: 38–54.

    Article  CAS  Google Scholar 

  • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I . (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16: 4623–4635.

    Article  CAS  Google Scholar 

  • Moser AR, Pitot HC, Dove WF . (1990). A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247: 322–324.

    Article  CAS  Google Scholar 

  • Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C et al. (2005). Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2: 105–117.

    Article  CAS  Google Scholar 

  • Muller-Decker K, Neufang G, Berger I, Neumann M, Marks F, Furstenberger G . (2002). Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc Natl Acad Sci USA 99: 12483–12488.

    Article  CAS  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T . (2004). Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306: 2105–2108.

    Article  CAS  Google Scholar 

  • Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK et al. (2008). SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135: 907–918.

    Article  CAS  Google Scholar 

  • Ono M, Kuwano M, Kung HF . (1991). Malignant transformation of mouse BALB/3T3 cells by polyoma middle T antigen requires epidermal growth factor receptor expression. Cell Growth Differ 2: 317–322.

    CAS  PubMed  Google Scholar 

  • Ota H, Tokunaga E, Chang K, Hikasa M, Iijima K, Eto M et al. (2006). Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25: 176–185.

    Article  CAS  Google Scholar 

  • Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H et al. (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 37: 349–350.

    Article  CAS  Google Scholar 

  • Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R et al. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429: 771–776.

    Article  CAS  Google Scholar 

  • Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F et al. (2007). SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21: 2644–2658.

    Article  CAS  Google Scholar 

  • Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L et al. (2006). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281: 21745–21754.

    Article  CAS  Google Scholar 

  • Rodgers JT, Puigserver P . (2007). Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA 104: 12861–12866.

    Article  CAS  Google Scholar 

  • Rogina B, Helfand SL . (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101: 15998–16003.

    Article  CAS  Google Scholar 

  • Sakatani T, Kaneda A, Iacobuzio-Donahue CA, Carter MG, de Boom Witzel S, Okano H et al. (2005). Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 307: 1976–1978.

    Article  CAS  Google Scholar 

  • Stunkel W, Peh BK, Tan YC, Nayagam VM, Wang X, Salto-Tellez M et al. (2007). Function of the SIRT1 protein deacetylase in cancer. Biotechnol J 2: 1360–1368.

    Article  CAS  Google Scholar 

  • Tiano HF, Loftin CD, Akunda J, Lee CA, Spalding J, Sessoms A et al. (2002). Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Res 62: 3395–3401.

    CAS  PubMed  Google Scholar 

  • Tissenbaum HA, Guarente L . (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410: 227–230.

    Article  CAS  Google Scholar 

  • van der Veer E, Ho C, O'Neil C, Barbosa N, Scott R, Cregan SP et al. (2007). Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem 282: 10841–10845.

    Article  CAS  Google Scholar 

  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK et al. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107: 149–159.

    Article  CAS  Google Scholar 

  • Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C et al. (2008a). Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14: 312–323.

    Article  CAS  Google Scholar 

  • Wang RH, Zheng Y, Kim HS, Xu X, Cao L, Luhasen T et al. (2008b). Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell 32: 11–20.

    Article  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M et al. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430: 686–689.

    Article  CAS  Google Scholar 

  • Wu Y, Yakar S, Zhao L, Hennighausen L, LeRoith D . (2002). Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res 62: 1030–1035.

    CAS  PubMed  Google Scholar 

  • Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23: 2369–2380.

    Article  CAS  Google Scholar 

  • Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng W, Liu G et al. (2008). Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 80: 191–199.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Christine Pratt for allowing us to use some of her chemicals. The projects were funded by the Canadian Institutes of Health Research. GB is a recipient of fellowship from the Fonds de Recherche en Santé du Québec (FRSQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M W McBurney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boily, G., He, X., Pearce, B. et al. SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 28, 2882–2893 (2009). https://doi.org/10.1038/onc.2009.147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.147

Keywords

This article is cited by

Search

Quick links