Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNA methyltransferase-mediated transcriptional silencing in malignant glioma: a combined whole-genome microarray and promoter array analysis

Abstract

Epigenetic inactivation of tumor suppressor genes is a common feature in human cancer. Promoter hypermethylation and histone deacetylation are reversible epigenetic mechanisms associated with transcriptional regulation. DNA methyltransferases (DNMT1 and DNMT3b) regulate and maintain promoter methylation and are overexpressed in human cancer. We performed whole-genome microarray analysis to identify genes with altered expression after RNAi-induced suppression of DNMT in a glioblastoma multiforme (GBM) cell line. We then identified genes with both decreased expression and evidence of promoter CpG island hypermethylation in GBM tissue samples using a combined whole-genome microarray transcriptome analysis in conjunction with a promoter array analysis after DNA immunoprecipitation with anti-5-methylcytidine. DNMT1 and 3b knockdown resulted in the restored expression of 308 genes that also contained promoter region hypermethylation. Of these, 43 were also found to be downregulated in GBM tissue samples. Three downregulated genes with hypermethylated promoters and restored expression in response to acute DNMT suppression were assayed for methylation changes using bisulfite sequence analysis of the promoter region after chronic DNMT suppression. Restoration of gene expression was not associated with changes in promoter region methylation, but rather with changes in histone methylation and chromatin conformation. Two of the identified genes exhibited growth suppressive activity in in vitro assays. Combining targeted genetic manipulations with comprehensive genomic and expression analyses provides a potentially powerful new approach for identifying epigenetically regulated genes in GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abdullah JM, Ahmad F, Ahmad KA, Ghazali MM, Jaafar H, Ideris A et al. (2007). Molecular genetic analysis of BAX and cyclin D1 genes in patients with malignant glioma. Neurol Res 29: 239–242.

    Article  CAS  Google Scholar 

  • Ahluwalia A, Hurteau JA, Bigsby RM, Nephew KP . (2001). DNA methylation in ovarian cancer. II. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells. Gynecol Oncol 82: 299–304.

    Article  CAS  Google Scholar 

  • Arai E, Kanai Y, Ushijima S, Fujimoto H, Mukai K, Hirohashi S . (2006). Regional DNA hypermethylation and DNA methyltransferase (DNMT) 1 protein overexpression in both renal tumors and corresponding nontumorous renal tissues. Int J Cancer 119: 288–296.

    Article  CAS  Google Scholar 

  • Baylin SB . (2005). DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2 (Suppl 1): S4–11.

    Article  CAS  Google Scholar 

  • Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY . (2003). Primary brain tumours in adults. Lancet 361: 323–331.

    Article  Google Scholar 

  • Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ et al. (2007). CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67: 4010–4015.

    Article  CAS  Google Scholar 

  • Calvanese V, Horrillo A, Hmadcha A, Suarez-Alvarez B, Fernandez AF, Lara E et al. (2008). Cancer genes hypermethylated in human embryonic stem cells. PLoS ONE 3: e3294.

    Article  Google Scholar 

  • Chen WY, Baylin SB . (2005). Inactivation of tumor suppressor genes: choice between genetic and epigenetic routes. Cell Cycle 4: 10–12.

    Article  Google Scholar 

  • Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A et al. (2003). Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 63: 2742–2746.

    CAS  PubMed  Google Scholar 

  • Costello JF, Berger MS, Huang HS, Cavenee WK . (1996). Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res 56: 2405–2410.

    CAS  Google Scholar 

  • Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al. (2005). Distinct sets of genetic alterations in melanoma. N Engl J Med 353: 2135–2147.

    Article  CAS  Google Scholar 

  • Dahl C, Guldberg P . (2007). The genome and epigenome of malignant melanoma. APMIS 115: 1161–1176.

    Article  CAS  Google Scholar 

  • Deng Y, Yao L, Chau L, Ng SS, Peng Y, Liu X et al. (2003). N-Myc downstream-regulated gene 2 (NDRG2) inhibits glioblastoma cell proliferation. Int J Cancer 106: 342–347.

    Article  CAS  Google Scholar 

  • Dulaimi E, Hillinck J, Ibanez de Caceres I, Al-Saleem T, Cairns P . (2004). Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res 10: 6189–6193.

    Article  CAS  Google Scholar 

  • Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G et al. (2005). Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 102: 15785–15790.

    Article  CAS  Google Scholar 

  • Ehrich M, Turner J, Gibbs P, Lipton L, Giovanneti M, Cantor C et al. (2008). Cytosine methylation profiling of cancer cell lines. Proc Natl Acad Sci USA 105: 4844–4849.

    Article  CAS  Google Scholar 

  • Essner JJ, Chen E, Ekker SC . (2006). Syndecan-2. Int J Biochem Cell Biol 38: 152–156.

    Article  CAS  Google Scholar 

  • Esteller M . (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8: 286–298.

    Article  CAS  Google Scholar 

  • Esteller M . (2008). Epigenetics in cancer. N Engl J Med 358: 1148–1159.

    Article  CAS  Google Scholar 

  • Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG . (1999). Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59: 793–797.

    CAS  PubMed  Google Scholar 

  • Fang JY, Cheng ZH, Chen YX, Lu R, Yang L, Zhu HY et al. (2004). Expression of Dnmt1, demethylase, MeCP2 and methylation of tumor-related genes in human gastric cancer. World J Gastroenterol 10: 3394–3398.

    Article  CAS  Google Scholar 

  • Fears CY, Gladson CL, Woods A . (2006). Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem 281: 14533–14536.

    Article  CAS  Google Scholar 

  • Foltz G, Ryu GY, Yoon JG, Nelson T, Fahey J, Frakes A et al. (2006). Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma. Cancer Res 66: 6665–6674.

    Article  CAS  Google Scholar 

  • Fontijn D, Adema AD, Bhakat KK, Pinedo HM, Peters GJ, Boven E . (2007). O6-methylguanine-DNA-methyltransferase promoter demethylation is involved in basic fibroblast growth factor induced resistance against temozolomide in human melanoma cells. Mol Cancer Ther 6: 2807–2815.

    Article  CAS  Google Scholar 

  • Girault I, Tozlu S, Lidereau R, Bieche I . (2003). Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res 9: 4415–4422.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Gomez P, Bello MJ, Arjona D, Lomas J, Alonso ME, De Campos JM et al. (2003). Promoter hypermethylation of multiple genes in astrocytic gliomas. Int J Oncol 22: 601–608.

    CAS  PubMed  Google Scholar 

  • Gordon D, Abajian C, Green P . (1998). Consed: a graphical tool for sequence finishing. Genome Res 8: 195–202.

    Article  CAS  Google Scholar 

  • Gronbaek K, Hother C, Jones PA . (2007). Epigenetic changes in cancer. APMIS 115: 1039–1059.

    Article  Google Scholar 

  • Hambardzumyan D, Squatrito M, Holland EC . (2006). Radiation resistance and stem-like cells in brain tumors. Cancer Cell 10: 454–456.

    Article  CAS  Google Scholar 

  • Han I, Park H, Oh ES . (2004). New insights into syndecan-2 expression and tumourigenic activity in colon carcinoma cells. J Mol Histol 35: 319–326.

    Article  CAS  Google Scholar 

  • Hayashi H, Nagae G, Tsutsumi S, Kaneshiro K, Kozaki T, Kaneda A et al. (2007). High-resolution mapping of DNA methylation in human genome using oligonucleotide tiling array. Hum Genet 120: 701–711.

    Article  CAS  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M et al. (2005). MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352: 997–1003.

    Article  CAS  Google Scholar 

  • Ibanez de Caceres I, Battagli C, Esteller M, Herman JG, Dulaimi E, Edelson MI et al. (2004). Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res 64: 6476–6481.

    Article  Google Scholar 

  • James SR, Link PA, Karpf AR . (2006). Epigenetic regulation of X-linked cancer/germline antigen genes by DNMT1 and DNMT3b. Oncogene 25: 6975–6985.

    Article  CAS  Google Scholar 

  • Kanai Y, Ushijima S, Kondo Y, Nakanishi Y, Hirohashi S . (2001). DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. Int J Cancer 91: 205–212.

    Article  CAS  Google Scholar 

  • Karpf AR . (2007). Epigenomic reactivation screening to identify genes silenced by DNA hypermethylation in human cancer. Curr Opin Mol Ther 9: 231–241.

    CAS  PubMed  Google Scholar 

  • Kim H, Kwon YM, Kim JS, Han J, Shim YM, Park J et al. (2006a). Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer. Cancer 107: 1042–1049.

    Article  CAS  Google Scholar 

  • Kim TY, Zhong S, Fields CR, Kim JH, Robertson KD . (2006b). Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma. Cancer Res 66: 7490–7501.

    Article  CAS  Google Scholar 

  • Kim Y, Park H, Lim Y, Han I, Kwon HJ, Woods A et al. (2003). Decreased syndecan-2 expression correlates with trichostatin-A induced-morphological changes and reduced tumorigenic activity in colon carcinoma cells. Oncogene 22: 826–830.

    Article  CAS  Google Scholar 

  • Kusano Y, Yoshitomi Y, Munesue S, Okayama M, Oguri K . (2004). Cooperation of syndecan-2 and syndecan-4 among cell surface heparan sulfate proteoglycans in the actin cytoskeletal organization of Lewis lung carcinoma cells. J Biochem (Tokyo) 135: 129–137.

    Article  CAS  Google Scholar 

  • Leu YW, Rahmatpanah F, Shi H, Wei SH, Liu JC, Yan PS et al. (2003). Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res 63: 6110–6115.

    CAS  PubMed  Google Scholar 

  • Lorente A, Mueller W, Urdangarin E, Lazcoz P, Lass U, von Deimling A et al. (2008). RASSF1A, BLU, NORE1A, PTEN and MGMT expression and promoter methylation in gliomas and glioma cell lines and evidence of deregulated expression of de novo DNMTs. Brain Pathol.

  • Martinez R, Setien F, Voelter C, Casado S, Quesada MP, Schackert G et al. (2007). CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis 28: 1264–1268.

    Article  CAS  Google Scholar 

  • McGarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, Baylin SB . (2006). Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res 66: 3541–3549.

    Article  CAS  Google Scholar 

  • Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ et al. (2005). Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353: 2012–2024.

    Article  CAS  Google Scholar 

  • Milutinovic S, Brown SE, Zhuang Q, Szyf M . (2004). DNA methyltransferase 1 knock down induces gene expression by a mechanism independent of DNA methylation and histone deacetylation. J Biol Chem 279: 27915–27927.

    Article  CAS  Google Scholar 

  • Miranda TB, Jones PA . (2007). DNA methylation: the nuts and bolts of repression. J Cell Physiol 213: 384–390.

    Article  CAS  Google Scholar 

  • Mischel PS, Shai R, Shi T, Horvath S, Lu KV, Choe G et al. (2003). Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene 22: 2361–2373.

    Article  CAS  Google Scholar 

  • Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y et al. (2001). Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97: 1172–1179.

    Article  CAS  Google Scholar 

  • Modrowski D, Orosco A, Thevenard J, Fromigue O, Marie PJ . (2005). Syndecan-2 overexpression induces osteosarcoma cell apoptosis: implication of syndecan-2 cytoplasmic domain and JNK signaling. Bone 37: 180–189.

    Article  CAS  Google Scholar 

  • Mueller W, Nutt CL, Ehrich M, Riemenschneider MJ, von Deimling A, van den Boom D et al. (2007). Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene 26: 583–593.

    Article  CAS  Google Scholar 

  • Park H, Kim Y, Lim Y, Han I, Oh ES . (2002). Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J Biol Chem 277: 29730–29736.

    Article  CAS  Google Scholar 

  • Park HJ, Yu E, Shim YH . (2006). DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma. Cancer Lett 233: 271–278.

    Article  CAS  Google Scholar 

  • Paz MF, Wei S, Cigudosa JC, Rodriguez-Perales S, Peinado MA, Huang TH et al. (2003). Genetic unmasking of epigenetically silenced tumor suppressor genes in colon cancer cells deficient in DNA methyltransferases. Hum Mol Genet 12: 2209–2219.

    Article  CAS  Google Scholar 

  • Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al. (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444: 761–765.

    Article  CAS  Google Scholar 

  • Rao S, Procko E, Shannon MF. . (2001). Chromatin remodeling, measured by a novel real-time polymerase chain reaction assay, across the proximal promoter region of the IL-2 gene. J Immunol 167: 4494–4503.

    Article  CAS  Google Scholar 

  • Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE et al. (2002). DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416: 552–556.

    Article  CAS  Google Scholar 

  • Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A et al. (2003). DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33: 61–65.

    Article  CAS  Google Scholar 

  • Sato M, Horio Y, Sekido Y, Minna JD, Shimokata K, Hasegawa Y . (2002). The expression of DNA methyltransferases and methyl-CpG-binding proteins is not associated with the methylation status of p14(ARF), p16(INK4a) and RASSF1A in human lung cancer cell lines. Oncogene 21: 4822–4829.

    Article  CAS  Google Scholar 

  • Schiappacassi M, Lovat F, Canzonieri V, Belletti B, Berton S, Di Stefano D et al. (2008). p27Kip1 expression inhibits glioblastoma growth, invasion, and tumor-induced neoangiogenesis. Mol Cancer Ther 7: 1164–1175.

    Article  CAS  Google Scholar 

  • Schuebel KE, Chen W, Cope L, Glockner SC, Suzuki H, Yi JM et al. (2007). Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 3: 1709–1723.

    Article  CAS  Google Scholar 

  • Shilatifard A . (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75: 243–269.

    Article  CAS  Google Scholar 

  • Shostak KO, Dmitrenko VV, Garifulin OM, Rozumenko VD, Khomenko OV, Zozulya YA et al. (2003). Downregulation of putative tumor suppressor gene TSC-22 in human brain tumors. J Surg Oncol 82: 57–64.

    Article  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. (2004). Identification of human brain tumour initiating cells. Nature 432: 396–401.

    Article  CAS  Google Scholar 

  • Stone AR, Bobo W, Brat DJ, Devi NS, Van Meir EG, Vertino PM . (2004). Aberrant methylation and down-regulation of TMS1/ASC in human glioblastoma. Am J Pathol 165: 1151–1161.

    Article  CAS  Google Scholar 

  • Suzuki M, Sunaga N, Shames DS, Toyooka S, Gazdar AF, Minna JD . (2004). RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res 64: 3137–3143.

    Article  CAS  Google Scholar 

  • Tan SH, Ida H, Lau QC, Goh BC, Chieng WS, Loh M et al. (2007). Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol Rep 18: 1225–1230.

    CAS  PubMed  Google Scholar 

  • Wang Z, Hao Y, Lowe AW . (2008). The adenocarcinoma-associated antigen, AGR2, promotes tumor growth, cell migration, and cellular transformation. Cancer Res 68: 492–497.

    Article  CAS  Google Scholar 

  • Yan L, Nass SJ, Smith D, Nelson WG, Herman JG, Davidson NE . (2003). Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor-alpha (ER) in ER-negative human breast cancer cell lines. Cancer Biol Ther 2: 552–556.

    Article  CAS  Google Scholar 

  • Zhang W, Bauer M, Croner RS, Pelz JO, Lodygin D, Hermeking H et al. (2007). DNA stool test for colorectal cancer: hypermethylation of the secreted frizzled-related protein-1 gene. Dis Colon Rectum 50: 1618–1626; discussion 1626–1627.

    Article  Google Scholar 

Download references

Acknowledgements

We thank DNA core sequencing facility at University of Iowa for its helpful discussions and Dr Gi-Yung Ryu for his help in analysing microarray data. We are thankful to Matt Howard for his support and help in tissue collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Foltz or A Madan.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foltz, G., Yoon, JG., Lee, H. et al. DNA methyltransferase-mediated transcriptional silencing in malignant glioma: a combined whole-genome microarray and promoter array analysis. Oncogene 28, 2667–2677 (2009). https://doi.org/10.1038/onc.2009.122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.122

Keywords

This article is cited by

Search

Quick links