Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fbw7 promotes ubiquitin-dependent degradation of c-Myb: involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb

Abstract

Expression of oncoprotein c-Myb oscillates during hematopoiesis and hematological malignancies. Its quantity is not only regulated through transcriptional control but also through the ubiquitin–proteasome pathway, accompanied by phosphorylation, although the mechanisms are poorly understood. In this report, we tried to identify an E3 ubiquitin ligase, which targets c-Myb for ubiquitin-dependent degradation. We found that an F-box protein, Fbw7, interacted with c-Myb, which is mutated in numerous cancers. Fbw7 facilitated ubiquitylation and degradation of c-Myb in intact cells. Moreover, depletion of Fbw7 by RNA interference delayed turnover and increased the abundance of c-Myb in myeloid leukemia cells concomitantly, and suppressed the transcriptional level of γ-globin, which receives transcriptional repression from c-Myb. In addition, we analysed sites required for both ubiquitylation and degradation of c-Myb. We found that Thr-572 is critical for Fbw7-mediated ubiquitylation in mouse c-Myb using site-directed mutagenesis. Fbw7 recognized the phosphorylation of Thr-572, which was mediated by glycogen synthase kinase 3 (GSK3). In consequence, the c-Myb protein was markedly stabilized by the substitution of Thr-572 to Ala. These observations suggest that SCFFbw7 ubiquitin ligase regulates phosphorylation-dependent degradation of c-Myb protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bies J, Mukhopadhyaya R, Pierce J, Wolff L . (1995). Only late, nonmitotic stages of granulocyte differentiation in 32Dcl3 cells are blocked by ectopic expression of murine c-myb and its truncated forms. Cell Growth Differ 6: 59–68.

    CAS  PubMed  Google Scholar 

  • Bies J, Feiková S, Bottaro DP, Wolff L . (2000). Hyperphosphorylation and increased proteolytic breakdown of c-Myb induced by the inhibition of Ser/Thr protein phosphatases. Oncogene 19: 2846–2854.

    Article  CAS  Google Scholar 

  • Bies J, Feiková S, Markus J, Wolff L . (2001). Phosphorylation-dependent conformation and proteolytic stability of c-Myb. Blood Cells Mol Dis 27: 422–428.

    Article  CAS  Google Scholar 

  • Bies J, Nazarov V, Wolff L . (1999). Identification of protein instability determinants in the carboxy-terminal region of c-Myb removed as a result of retroviral integration in murine monocytic leukemias. J Virol 73: 2038–2044.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bies J, Wolff L . (1997). Oncogenic activation of c-Myb by carboxyl-terminal truncation leads to decreased proteolysis by the ubiquitin-26S proteasome pathway. Oncogene 14: 203–212.

    Article  CAS  Google Scholar 

  • Charrasse S, Carena I, Brondani V, Klempnauer KH, Ferrari S . (2000). Degradation of B-Myb by ubiquitin-mediated proteolysis: involvement of the Cdc34-SCFp45Skp2 pathway. Oncogene 19: 2986–2995.

    Article  CAS  Google Scholar 

  • Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela J-M, Dik WA et al. (2007). The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 110: 1251–1261.

    Article  CAS  Google Scholar 

  • Cohen P, Goedert M . (2004). GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 3: 479–487.

    Article  CAS  Google Scholar 

  • Corradini F, Cesi V, Bartella V, Pani E, Bussolari R, Candini O et al. (2005). Enhanced proliferative potential of hematopoietic cells expressing degradation-resistant c-Myb mutants. J Biol Chem 280: 30254–30262.

    Article  CAS  Google Scholar 

  • Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J . (2003). Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 22: 4478–4488.

    Article  CAS  Google Scholar 

  • Feiková S, Wolff L, Bies J . (2000). Constitutive ubiquitination and degradation of c-Myb by the 26S proteasome during proliferation and differentiation of myeloid cells. Neoplasma 47: 212–218.

    PubMed  Google Scholar 

  • Friedman AD . (2002). Runx1, c-Myb, and C/EBPα couple differentiation to proliferation or growth arrest during hematopoiesis. J Cell Biochem 86: 624–629.

    Article  CAS  Google Scholar 

  • Goto H, Inagaki M . (2007). Production of a site- and phosphorylation state-specific antibody. Nat Protoc 2: 2574–2581.

    Article  CAS  Google Scholar 

  • Hatakeyama S, Kitagawa M, Nakayama K, Shirane M, Matsumoto M, Hattori K et al. (1999). Ubiquitin-dependent degradation of IκBαis mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proc Natl Acad Sci USA 96: 3859–3863.

    Article  CAS  Google Scholar 

  • Hershko A, Ciechanover A . (1998). The ubiquitin system. Annu Rev Biochem 67: 425–479.

    Article  CAS  Google Scholar 

  • Hiramatsu Y, Kitagawa K, Suzuki T, Uchida C, Hattori T, Kikuchi H et al. (2006). Degradation of Tob1 mediated by SCFSkp2-dependent ubiquitination. Cancer Res 66: 8477–8483.

    Article  CAS  Google Scholar 

  • Jiang J, Best S, Menzel S, Silver N, Lai MI, Surdulescu GL et al. (2006). cMYB is involved in the regulation of fetal hemoglobin production in adults. Blood 108: 1077–1083.

    Article  CAS  Google Scholar 

  • Kanei-Ishii C, Ninomiya-Tsuji J, Tanikawa J, Nomura T, Ishitani T, Kishida S et al. (2004a). Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK. Genes Dev 18: 816–829.

    Article  CAS  Google Scholar 

  • Kanei-Ishii C, Nomura T, Tanikawa J, Ichikawa-Iwata E, Ishii S . (2004b). Differential sensitivity of v-Myb and c-Myb to Wnt-1-induced protein degradation. J Biol Chem 279: 44582–44589.

    Article  CAS  Google Scholar 

  • Kanei-Ishii C, Nomura T, Takagi T, Watanabe N, Nakayama KI, Ishii S . (2008). Fbxw7 acts as an E3 ubiquitin ligase that targets c-Myb for nemo-like kinase (NLK)-induced degradation. J Biol Chem 283: 30540–30548.

    Article  CAS  Google Scholar 

  • Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K et al. (1999). An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J 18: 2401–2410.

    Article  CAS  Google Scholar 

  • Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K et al. (1996). Consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J 15: 7060–7069.

    Article  CAS  Google Scholar 

  • Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW et al. (2001). Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294: 173–177.

    Article  CAS  Google Scholar 

  • Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F et al. (2007). Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 39: 593–595.

    Article  CAS  Google Scholar 

  • Lieu YK, Kumar A, Pajerowski AG, Rogers TJ, Reddy EP . (2004). Requirement of c-myb in T cell development and in mature T cell function. Proc Natl Acad Sci USA 101: 14853–14858.

    Article  CAS  Google Scholar 

  • Matsumoto A, Onoyama I, Nakayama KI . (2006). Expression of mouse Fbxw7 isoforms is regulated in a cell cycle- or p53-dependent manner. Biochem Biophys Res Commun 350: 114–119.

    Article  CAS  Google Scholar 

  • Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K et al. (2008). Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev 22: 986–991.

    Article  CAS  Google Scholar 

  • Minella AC, Clurman BE . (2005). Mechanisms of tumor suppression by the SCFFbw7. Cell Cycle 4: 1356–1359.

    Article  CAS  Google Scholar 

  • Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K et al. (2000). Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication. EMBO J 19: 2069–2081.

    Article  CAS  Google Scholar 

  • Nakayama K, Nakayama KI . (2006). Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6: 369–381.

    Article  CAS  Google Scholar 

  • Oh IH, Reddy EP . (1999). The myb gene family in cell growth, differentiation and apoptosis. Oncogene 18: 3017–3033.

    Article  CAS  Google Scholar 

  • Ohta T, Michel J, Schottelius AJ, Xiong Y . (1999). ROC1, a homolog of APC11, represents a family of Cullin partners with an associated ubiquitin ligase activity. Mol Cell 3: 535–541.

    Article  CAS  Google Scholar 

  • O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. (2007). FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med 204: 1813–1824.

    Article  Google Scholar 

  • Onoyama I, Tsunematsu R, Matsumoto A, Kimura T, Alborán IM, Nakayama K et al. (2007). Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med 204: 2875–2888.

    Article  CAS  Google Scholar 

  • Ramsay RG, Ikeda K, Rifkind RA, Marks PA . (1986). Changes in gene expression associated with induced differentiation of erythroleukemia: protooncogenes, globin genes, and cell division. Proc Natl Acad Sci USA 83: 6849–6853.

    Article  CAS  Google Scholar 

  • Sakamoto H, Dai G, Tsujino K, Hashimoto K, Huang X, Fujimoto T et al. (2006). Proper levels of c-Myb are discretely defined at distinct steps of hematopoietic cell development. Blood 108: 896–903.

    Article  CAS  Google Scholar 

  • Selvakumaran M, Liebermann DA, Hoffman-Liebermann B . (1992). Deregulated c-myb disrupts interleukin-6- or leukemia inhibitory factor-induced myeloid differentiation prior to c-myc: role in leukemogenesis. Mol Cell Biol 12: 2493–2500.

    Article  CAS  Google Scholar 

  • Sharma VM, Draheim KM, Kelliher MA . (2007). The Notch1/c-Myc pathway in T cell leukemia. Cell Cycle 6: 927–930.

    Article  CAS  Google Scholar 

  • Siegert W, Beutler C, Langmach K, Keitel C, Schmidt CA . (1990). Differential expression of the oncoproteins c-myc and c-myb in human lymphoproliferative disorders. Eur J Cancer 26: 733–737.

    Article  CAS  Google Scholar 

  • Slamon DJ, Boone TC, Murdock DC, Keith DE, Press MF, Larson RA et al. (1986). Studies of the human c-myb gene and its product in human acute leukemias. Science 233: 347–351.

    Article  CAS  Google Scholar 

  • Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI . (2001). Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413: 316–322.

    Article  CAS  Google Scholar 

  • Sundqvist A, Bengoechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW et al. (2005). Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCFFbw7. Cell Metab 1: 379–391.

    Article  CAS  Google Scholar 

  • Tanikawa J, Ichikawa-Iwata E, Kanei-Ishii C, Nakai A, Matsuzawa S, Reed JC et al. (2000). p53 suppresses the c-Myb-induced activation of heat shock transcription factor 3. J Biol Chem 275: 15578–15585.

    Article  CAS  Google Scholar 

  • Tanji C, Yamamoto H, Yorioka N, Kohno N, Kikuchi K, Kikuchi A . (2002). A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3β (GSK-3β) and mediates protein kinase A-dependent inhibition of GSK-3β. J Biol Chem 277: 36955–36961.

    Article  CAS  Google Scholar 

  • Tetzlaff MT, Yu W, Li M, Zhang P, Finegold M, Mahon K et al. (2004). Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc Natl Acad Sci USA 101: 3338–3345.

    Article  CAS  Google Scholar 

  • Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G et al. (2007). The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 204: 1825–1835.

    Article  CAS  Google Scholar 

  • Uchida C, Miwa S, Kitagawa K, Hattori T, Isobe T, Otani S et al. (2005). Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J 24: 160–169.

    Article  CAS  Google Scholar 

  • Vegiopoulos A, García P, Emambokus N, Frampton J . (2006). Coordination of erythropoiesis by the transcription factor c-Myb. Blood 107: 4703–4710.

    Article  CAS  Google Scholar 

  • Wei W, Jin J, Schlisio S, Harper JW, Kaelin Jr WG . (2005). The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8: 25–33.

    Article  CAS  Google Scholar 

  • Welcker M, Clurman BE . (2008). FBW7 ubiquitin ligase: a tumor suppressor at the crossroads of cell division, growth and differentiation. Nat Rev 8: 83–93.

    Article  CAS  Google Scholar 

  • Welcker M, Orian A, Jin L, Grim JE, Harper JW, Eisenman RN et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101: 9085–9090.

    Article  CAS  Google Scholar 

  • Weng AP, Ferrando AA, Lee W, Morris 4th JP, Silverman LB, Sanchez-Irizarry C et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271.

    Article  CAS  Google Scholar 

  • Wu G, Lyapina S, Das I . (2001). SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol Cell Biol 21: 7403–7415.

    Article  CAS  Google Scholar 

  • Wu RC, Feng Q, Lonard DM, O’Malley BW . (2007). SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129: 1125–1140.

    Article  CAS  Google Scholar 

  • Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. 23: 2116–2125.

  • Yamamoto H, Yoo SK, Nishita M, Kikuchi A, Minami Y . (2007). Wnt5a modulates glycogen synthase kinase 3 to induce phosphorylation of receptor tyrosine kinase Ror2. Genes Cells 12: 1215–1223.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yojiro Kotake, Keiichi I Nakayama, Masaki Matsumoto, Akinobu Matsumoto and Issay Kitabayashi for providing plasmids and useful discussions, and Sayuri Suzuki, Tomomi Abe, Ning Liu, Harumi Shiratori, Daisuke Hiraoka, Daizo Ueno, Yasue Kirita, Tatsuya Kobayashi, Konomi Mizuguchi, Erina Nihashi, Syuhei Iizuka, Daisuke Ichikawa and Naohiro Takamoto for their technical assistance. This study was supported in part by grants from the Ministry of Education, Science, Sports, Culture and Technology of Japan (MK and KK), by a COE program of Hamamatsu University School of Medicine from the Ministry of Education, Science, Sports, Culture and Technology of Japan (MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Kitagawa.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitagawa, K., Hiramatsu, Y., Uchida, C. et al. Fbw7 promotes ubiquitin-dependent degradation of c-Myb: involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb. Oncogene 28, 2393–2405 (2009). https://doi.org/10.1038/onc.2009.111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.111

Keywords

This article is cited by

Search

Quick links