Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The human protein kinase HIPK2 phosphorylates and downregulates the methyl-binding transcription factor ZBTB4

Abstract

HIPK2 is a eukaryotic Serine–Threonine kinase that controls cellular proliferation and survival in response to exogenous signals. Here, we show that the human transcription factor ZBTB4 is a new target of HIPK2. The two proteins interact in vitro, colocalize and associate in vivo, and HIPK2 phosphorylates several conserved residues of ZBTB4. Overexpressing HIPK2 causes the degradation of ZBTB4, whereas overexpressing a kinase-deficient mutant of HIPK2 has no effect. The chemical activation of HIPK2 also decreases the amount of ZBTB4 in cells. Conversely, the inhibition of HIPK2 by drugs or by RNA interference causes a large increase in ZBTB4 levels. This negative regulation of ZBTB4 by HIPK2 occurs under normal conditions of cell growth. In addition, the degradation is increased by DNA damage. These findings have two consequences. First, we have recently shown that ZBTB4 inhibits the transcription of p21. Therefore, the activation of p21 by HIPK2 is two-pronged: stimulation of the activator p53, and simultaneous repression of the inhibitor ZBTB4. Second, ZBTB4 is also known to bind methylated DNA and repress methylated sequences. Consequently, our findings raise the possibility that HIPK2 might influence the epigenetic regulation of gene expression at loci that remain to be identified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Calzado MA, Renner F, Roscic A, Schmitz ML . (2007). HIPK2: a Versatile Switchboard Regulating the Transcription Machinery and Cell Death. Cell Cycle 6: 139–143.

    Article  CAS  PubMed  Google Scholar 

  • Clouaire T, Stancheva I . (2008). Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sci 65: 1509–1522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S et al. (2002). Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4: 11–19.

    Article  PubMed  Google Scholar 

  • Dauth I, Kruger J, Hofmann TG . (2007). Homeodomain-interacting protein kinase 2 is the ionizing radiation-activated p53 serine 46 kinase and is regulated by ATM. Cancer Res 67: 2274–2279.

    Article  CAS  PubMed  Google Scholar 

  • Defossez PA, Kelly KF, Filion GJ, Perez-Torrado R, Magdinier F, Menoni H et al. (2005). The human enhancer blocker CTC-binding factor interacts with the transcription factor Kaiso. J Biol Chem 280: 43017–43023.

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh H, Yeh TH, Yu J, Sharma MK, Perry A, Leonard JR et al. (2008). High-resolution, dual-platform aCGH analysis reveals frequent HIPK2 amplification and increased expression in pilocytic astrocytomas. Oncogene 27: 4745–4751.

    Article  CAS  PubMed  Google Scholar 

  • Di Stefano V, Rinaldo C, Sacchi A, Soddu S, D’Orazi G . (2004). Homeodomain-interacting protein kinase-2 activity and p53 phosphorylation are critical events for cisplatin-mediated apoptosis. Exp Cell Res 293: 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Di Stefano V, Soddu S, Sacchi A, D’Orazi G . (2005). HIPK2 contributes to PCAF-mediated p53 acetylation and selective transactivation of p21Waf1 after nonapoptotic DNA damage. Oncogene 24: 5431–5442.

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt OG, Boutell C, Orr A, Ullrich E, Haller O, Everett RD . (2003). The homeodomain-interacting kinase PKM (HIPK-2) modifies ND10 through both its kinase domain and a SUMO-1 interaction motif and alters the posttranslational modification of PML. Exp Cell Res 283: 36–50.

    Article  CAS  PubMed  Google Scholar 

  • Filion GJ, Fouvry L, Defossez PA . (2006a). Using reverse electrophoretic mobility shift assay to measure and compare protein-DNA binding affinities. Anal Biochem 357: 156–158.

    Article  CAS  PubMed  Google Scholar 

  • Filion GJ, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez PA . (2006b). A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol 26: 169–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gresko E, Roscic A, Ritterhoff S, Vichalkovski A, del Sal G, Schmitz ML . (2006). Autoregulatory control of the p53 response by caspase-mediated processing of HIPK2. Embo J 25: 1883–1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W et al. (2002). Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Isono K, Nemoto K, Li Y, Takada Y, Suzuki R, Katsuki M et al. (2006). Overlapping roles for homeodomain-interacting protein kinases hipk1 and hipk2 in the mediation of cell growth in response to morphogenetic and genotoxic signals. Mol Cell Biol 26: 2758–2771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James P, Halladay J, Craig EA . (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144: 1425–1436.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanduri C, Fitzpatrick G, Mukhopadhyay R, Kanduri M, Lobanenkov V, Higgins M et al. (2002). A differentially methylated imprinting control region within the Kcnq1 locus harbours a methylation-sensitive chromatin insulator. J Biol Chem 4: 4.

    Google Scholar 

  • Kelly KF, Daniel JM . (2006). POZ for effect--POZ-ZF transcription factors in cancer and development. Trends Cell Biol 16: 578–587.

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Swarup S, Chen J, Ishitani T, Verheyen EM . (2009). Homeodomain-interacting protein kinases (Hipks) promote Wnt/Wg signali. Development 136: 241–251.

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Arai Y, Harada H, Shima Y, Yoshida H, Rokudai S et al. (2007). Mutations of the HIPK2 gene in acute myeloid leukemia and myelodysplastic syndrome impair AML1- and p53-mediated transcription. Oncogene 26: 7231–7239.

    Article  CAS  PubMed  Google Scholar 

  • Moller A, Sirma H, Hofmann TG, Staege H, Gresko E, Ludi KS et al. (2003). Sp100 is important for the stimulatory effect of homeodomain-interacting protein kinase-2 on p53-dependent gene expression. Oncogene 22: 8731–8737.

    Article  PubMed  Google Scholar 

  • Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T et al. (2000). p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102: 849–862.

    Article  CAS  PubMed  Google Scholar 

  • Ovcharenko D, Jarvis R, Hunicke-Smith S, Kelnar K, Brown D . (2005). High-throughput RNAi screening in vitro: from cell lines to primary cells. RNA 11: 985–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Torrado R, Yamada D, Defossez PA . (2006). Born to bind: the BTB protein-protein interaction domain. Bioessays 28: 1194–1202.

    Article  CAS  PubMed  Google Scholar 

  • Phan RT, Saito M, Basso K, Niu H, Dalla-Favera R . (2005). BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat Immunol 6: 1054–1060.

    Article  CAS  PubMed  Google Scholar 

  • Pierantoni GM, Fedele M, Pentimalli F, Benvenuto G, Pero R, Viglietto G et al. (2001). High mobility group I (Y) proteins bind HIPK2, a serine-threonine kinase protein which inhibits cell growth. Oncogene 20: 6132–6141.

    Article  CAS  PubMed  Google Scholar 

  • Pierantoni GM, Rinaldo C, Mottolese M, Di Benedetto A, Esposito F, Soddu S et al. (2007). High-mobility group A1 inhibits p53 by cytoplasmic relocalization of its proapoptotic activator HIPK2. J Clin Invest 117: 693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F et al. (2007a). MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 25: 739–750.

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo C, Prodosmo A, Siepi F, Soddu S . (2007b). HIPK2: a multitalented partner for transcription factors in DNA damage response and development. Biochem Cell Biol 85: 411–418.

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo C, Siepi F, Prodosmo A, Soddu S . (2008). HIPKs: Jack of all trades in basic nuclear activities. Biochim Biophys Acta 1783: 2124–2129.

    Article  CAS  PubMed  Google Scholar 

  • Roscic A, Moller A, Calzado MA, Renner F, Wimmer VC, Gresko E et al. (2006). Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol Cell 24: 77–89.

    Article  CAS  PubMed  Google Scholar 

  • Rui Y, Xu Z, Lin S, Li Q, Rui H, Luo W et al. (2004). Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. Embo J 23: 4583–4594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasini R, Samir AA, Carrier A, Isnardon D, Cecchinelli B, Soddu S et al. (2003). TP53INP1 s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J Biol Chem 278: 37722–37729.

    Article  CAS  PubMed  Google Scholar 

  • van Roy FM, McCrea PD . (2005). A role for Kaiso-p120ctn complexes in cancer? Nat Rev Cancer 5: 956–964.

    Article  CAS  PubMed  Google Scholar 

  • Weber A, Marquardt J, Elzi D, Forster N, Starke S, Glaum A et al. (2008). Zbtb4 represses transcription of P21CIP1 and controls the cellular response to p53 activation. EMBO J 27: 1563–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei G, Ku S, Ma GK, Saito S, Tang AA, Zhang J et al. (2007). HIPK2 represses beta-catenin-mediated transcription, epidermal stem cell expansion, and skin tumorigenesis. Proc Natl Acad Sci USA 104: 13040–13045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesierska-Gadek J, Schmitz ML, Ranftler C . (2007). Roscovitine-activated HIP2 kinase induces phosphorylation of wt p53 at Ser-46 in human MCF-7 breast cancer cells. J Cell Biochem 100: 865–874.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Nottke A, Goodman RH . (2005). Homeodomain-interacting protein kinase-2 mediates CtBP phosphorylation and degradation in UV-triggered apoptosis. Proc Natl Acad Sci USA 102: 2802–2807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Wang Y . (2007). Homeodomain-interacting protein kinase-2 (HIPK2) phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77 and modulates its DNA binding affinity. J Proteome Res 6: 4711–4719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Yoshimatsu Y, Hildebrand J, Frisch SM, Goodman RH . (2003). Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell 115: 177–186.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following colleagues for reagents: Nelson Dusetti, Roger Tsien, Phillip James, Jacques Camonis, Silvia Soddu. We are especially grateful to Gabriella d′Orazi for the HIPK2 knockdown cells, and to Patricia Le Baccon for her help. DY was supported by postdoctoral fellowships from the Curie Institute, and from Association pour la Recherche contre le Cancer. RPT was supported by a fellowship from Centre National de la Recherche Scientifique (CNRS). The Defossez lab is supported by CNRS (programme ATIP and programme PICS France-Russie), by Institut National du Cancer (ATIP Plus), by Association pour la Recherche contre le Cancer (grants no 3727 and no 4859), and by Ligue contre le Cancer. The work of MLS is supported by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P -A Defossez.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, D., Pérez-Torrado, R., Filion, G. et al. The human protein kinase HIPK2 phosphorylates and downregulates the methyl-binding transcription factor ZBTB4. Oncogene 28, 2535–2544 (2009). https://doi.org/10.1038/onc.2009.109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.109

Keywords

This article is cited by

Search

Quick links