Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RUNX1 and its fusion oncoprotein derivative, RUNX1-ETO, induce senescence-like growth arrest independently of replicative stress

Abstract

A role for the RUNX genes in cancer fail-safe processes has been suggested by their induction of senescence-like growth arrest in primary murine fibroblasts and the failure of RAS-induced senescence in Runx2-deficient cells. We now show that RUNX1 induces senescence in human primary fibroblasts. High-affinity DNA binding is necessary but not sufficient, as shown by the functional attenuation of the truncated RUNX1/AML1a isoform and the TEL-RUNX1 fusion oncoprotein. However, a similar phenotype was potently induced by the RUNX1-ETO (AML1-ETO) oncoprotein, despite its dominant-negative potential. A detailed comparison of H-RASV12, RUNX1 and RUNX1-ETO senescent phenotypes showed that the RUNX effectors induce earlier growth stasis with only low levels of DNA damage signaling and a lack of chromatin condensation, a marker of irreversible growth arrest. In human fibroblasts, all effectors induced p53 in the absence of detectable p14Arf, whereas only RUNX1-ETO induced senescence in p16Ink4a-null cells. Correlation was noted between induction of p53, reactive oxygen species and phospho-p38, whereas p38MAPK inhibition rescued cell growth markedly. These findings indicate a role for replication-independent pathways in RUNX and RUNX1-ETO senescence, and show that the context-specific oncogenic activity of RUNX1 fusion proteins is mirrored in their distinctive interactions with fail-safe responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  Google Scholar 

  • Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P et al. (2003). Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22: 4212–4222.

    Article  CAS  Google Scholar 

  • Bernardin F, Yang Y, Cleaves R, Zahurak M, Cheng L, Civin CI et al. (2002). TEL-AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice. Cancer Res 62: 3904–3908.

    CAS  PubMed  Google Scholar 

  • Blyth K, Cameron ER, Neil JC . (2005). The Runx gene family: gain or loss of function in cancer. Nat Rev Cancer 5: 376–387.

    Article  CAS  Google Scholar 

  • Blyth K, Vaillant F, Mackay N, Bell M, Jenkins A, Neil JC et al. (2006). Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer Res 66: 2195–2201.

    Article  CAS  Google Scholar 

  • Brookes S, Rowe J, Ruas M, Llanos S, Clark PA, Lomax M et al. (2002). INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence. EMBO J 21: 2936–2945.

    Article  CAS  Google Scholar 

  • Cammenga J, Niebuhr B, Horn S, Bergholz U, Putz G, Buchholz F et al. (2007). RUNX1 DNA-binding mutants, associated with minimally differentiated acute myelogenous leukemia, disrupt myeloid differentiation. Cancer Res 67: 537–545.

    Article  CAS  Google Scholar 

  • Colavitti R, Finkel T . (2005). Reactive oxygen species as mediators of cellular senescence. Iubmb Life 57: 277–281.

    Article  CAS  Google Scholar 

  • Courtois-Cox S, Jones SL, Cichowski K . (2008). Many roads lead to oncogene-induced senescence. Oncogene 27: 2801–2809.

    Article  CAS  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    Article  CAS  Google Scholar 

  • Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR . (2007). p38 alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11: 191–205.

    Article  CAS  Google Scholar 

  • Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, Hannon GJ et al. (2002). Oncogenic RAS and p53 cooperate to induce cellular senescence. Mol Cell Biol 22: 3497–3508.

    Article  CAS  Google Scholar 

  • Gil J, Peters G . (2006). Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7: 667–677.

    Article  CAS  Google Scholar 

  • Hayflick L . (1965). Limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614–636.

    Article  CAS  Google Scholar 

  • Hiebert SW, Sun W, Davis JN, Golub T, Shurtleff S, Buijs A et al. (1996). The t(12;21) translocation converts AML1-B from an activator to a repressor of transcription. Mol Cell Biol 16: 1349–1355.

    Article  CAS  Google Scholar 

  • Kilbey A, Blyth K, Wotton S, Terry A, Jenkins A, Bell M et al. (2007). Runx2 disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts. Cancer Res 67: 11263–11271.

    Article  CAS  Google Scholar 

  • Kilbey A, Terry A, Cameron ER, Neil JC . (2008). Oncogene induced senescence: an essential role for Runx. Cell Cycle 7: 2333–2340.

    Article  CAS  Google Scholar 

  • Krejci O, Wunderlich M, Geiger H, Chou FS, Schleimer D, Jansen M et al. (2008). P53 signaling in response to increased DNA damage sensitizes AML1-ETO cells to stress-induced death. Blood 111: 2190–2199.

    Article  CAS  Google Scholar 

  • Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T et al. (1999). Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274: 7936–7940.

    Article  CAS  Google Scholar 

  • Lenny N, Meyers S, Hiebert SW . (1995). Functional domains of the T(8-21) fusion protein, Aml-1/Eto. Oncogene 11: 1761–1769.

    CAS  PubMed  Google Scholar 

  • Linggi B, Muller-Tidow C, van de LL, Hu M, Nip J, Serve H et al. (2002). The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 8: 743–750.

    Article  CAS  Google Scholar 

  • Lutterbach B, Westendorf JJ, Linggi B, Isaac S, Seto E, Hiebert SW . (2000). A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. J Biol Chem 275: 651–656.

    Article  CAS  Google Scholar 

  • Meyers S, Lenny N, Hiebert SW . (1995). The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol Cell Biol 15: 1974–1982.

    Article  CAS  Google Scholar 

  • Motoda L, Osato M, Yamashita N, Jacob B, Chen LQ, Yanagida M et al. (2007). Runx1 protects hematopoietic stem/progenitor cells from oncogenic insult. Stem Cells 25: 2976–2986.

    Article  CAS  Google Scholar 

  • Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA et al. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703–716.

    Article  CAS  Google Scholar 

  • Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J . (2003). Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5: 741–747.

    Article  CAS  Google Scholar 

  • Peterson LF, Yan M, Zhang DE . (2007). The p21(Waf1) pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO. Blood 109: 4392–4398.

    Article  CAS  Google Scholar 

  • Robinson KA, Stewart CA, Pye QN, Nguyen X, Kenney L, Salzman S et al. (1999). Redox-sensitive protein phosphatase activity regulates the phosphorylation state of p38 protein kinase in primary astrocyte culture. J Neurosci Res 55: 724–732.

    Article  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a). Cell 88: 593–602.

    Article  CAS  Google Scholar 

  • Swantek D, Gergen JP . (2004). Ftz modulates Runt-dependent activation and repression of segment-polarity gene transcription. Development 131: 2281–2290.

    Article  CAS  Google Scholar 

  • Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Nishida J et al. (1995). An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J 14: 341–350.

    Article  CAS  Google Scholar 

  • Tsuzuki S, Hong DL, Gupta R, Matsuo K, Seto M, Enver T . (2007). Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. Plos Medicine 4: 880–896.

    Article  CAS  Google Scholar 

  • Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D et al. (2009). Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457: 51–57.

    Article  CAS  Google Scholar 

  • Wang WP, Chen JX, Liao R, Deng QD, Zhou JJ, Huang S et al. (2002). Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol 22: 3389–3403.

    Article  Google Scholar 

  • Wei WY, Hemmer RM, Sedivy JM . (2001). Role of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol 21: 6748–6757.

    Article  CAS  Google Scholar 

  • Westendorf JJ, Zaidi SK, Cascino JE, Kahler R, Van Wijnen AJ, Lian JB et al. (2002). Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol Cell Biol 22: 7982–7992.

    Article  CAS  Google Scholar 

  • Wotton S, Blyth K, Kilbey A, Jenkins A, Terry A, Bernardin F et al. (2004). RUNX1 transformation of primary embryonic fibroblasts is revealed in the absence of p53. Oncogene 23: 5476–5486.

    Article  CAS  Google Scholar 

  • Wotton S, Terry A, Kilbey A, Jenkins A, Herzyk P, Cameron E et al. (2008). Gene array analysis reveals a common Runx transcriptonal programme controlling cell adhesion and survival. Oncogene 27: 5856–5866.

    Article  CAS  Google Scholar 

  • Zaidi SK, Pande S, Pratap J, Gaur T, Grigoriu S, Ali SA et al. (2007). Runx2 deficiency and defective subnuclear targeting bypass senescence to promote immortalization and tumorigenic potential. Proc Natl Acad Sci USA 104: 19861–19866.

    Article  CAS  Google Scholar 

  • Zhang RG, Chen W, Adams PD . (2007). Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 27: 2343–2358.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Primary support for this work was provided by Cancer Research UK and the Leukemia Research Fund. We thank Janice Rowe for excellent technical assistance and Scott Hiebert (Vanderbilt University) for generous supply of reagents and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Neil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolyniec, K., Wotton, S., Kilbey, A. et al. RUNX1 and its fusion oncoprotein derivative, RUNX1-ETO, induce senescence-like growth arrest independently of replicative stress. Oncogene 28, 2502–2512 (2009). https://doi.org/10.1038/onc.2009.101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.101

Keywords

This article is cited by

Search

Quick links