Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death

Abstract

Following the screening of a battery of distinct small-interfering RNAs that target various components of the apoptotic machinery, we found that knockdown of the voltage-dependent anion channel 1 (VDAC1) was particularly efficient in preventing cell death induced by cisplatin (CDDP) in non-small cell lung cancer cells. Both the downregulation of VDAC1 and its chemical inhibition with 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid reduced the apoptosis-associated modifications induced by CDDP, including mitochondrial transmembrane potential dissipation and plasma membrane permeabilization. VDAC1 inhibition strongly reduced the CDDP-induced conformational activation of Bax, yet had no discernible effect on the activation of Bak, suggesting that VDAC1 acts downstream of Bak and upstream of Bax. Accordingly, knockdown of Bak abolished the activation of Bax, whereas Bax downregulation had no effect on Bak activation. In VDAC1-depleted cells, the failure of CDDP to activate Bax could be reversed by means of the Bcl-2/Bcl-XL antagonist ABT-737, which concomitantly restored CDDP cytotoxicity. Altogether, these results delineate a novel pathway for the induction of mitochondrial membrane permeabilization (MMP) in the course of CDDP-induced cell death that involves a hierarchical contribution of Bak, VDAC1 and Bax. Moreover, our data suggest that VDAC1 may act as a facultative regulator/effector of MMP, depending on the initial cytotoxic event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

ΔΨm:

mitochondrial transmembrane potential

BH3:

Bcl-2 homology domain 3

BRCA1:

breast cancer 1, early onset

CDDP:

cisplatin

Cyt c:

cytochrome c

DAPI:

4′,6-diamidino-2-phenylindole dihydrochloride

DIDS:

4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid

DiOC6(3):

3,3′dihexiloxalocarbocyanine iodide

ERCC1:

excision repair cross-complementing rodent repair deficiency, complementation group 1

H2O2:

hydrogen peroxide

HE:

hydroethidine

IMS:

intermembrane space

LDH:

lactate dehydrogenase

MMP:

mitochondrial membrane permeabilization

NAC:

N-acetylcysteine

NSCLC:

non-small cell lung cancer

OM:

mitochondrial outer membrane

PARP-1:

poly (ADP-ribose) polymerase 1

PI:

propidium iodide

ROS:

reactive oxygen species

siRNA:

small-interfering RNA

tBHP:

tert-butylhydroperoxide

VDAC1:

voltage-dependent anion channel 1

WST-1:

4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate.

References

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD . (2007). Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9: 550–555.

    Article  CAS  Google Scholar 

  • Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A et al. (2006). Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol 26: 9377–9386.

    Article  CAS  Google Scholar 

  • Belzacq AS, Vieira HL, Kroemer G, Brenner C . (2002). The adenine nucleotide translocator in apoptosis. Biochimie 84: 167–176.

    Article  CAS  Google Scholar 

  • Berndtsson M, Hagg M, Panaretakis T, Havelka AM, Shoshan MC, Linder S . (2007). Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA. Int J Cancer 120: 175–180.

    Article  CAS  Google Scholar 

  • Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z et al. (2000). Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 19: 329–336.

    Article  CAS  Google Scholar 

  • Brenner C, Grimm S . (2006). The permeability transition pore complex in cancer cell death. Oncogene 25: 4744–4756.

    Article  CAS  Google Scholar 

  • Castedo M, Perfettini JL, Andreau K, Roumier T, Piacentini M, Kroemer G . (2003). Mitochondrial apoptosis induced by the HIV-1 envelope. Ann NY Acad Sci 1010: 19–28.

    Article  CAS  Google Scholar 

  • Chandra D, Choy G, Daniel PT, Tang DG . (2005). Bax-dependent regulation of Bak by voltage-dependent anion channel 2. J Biol Chem 280: 19051–19061.

    Article  CAS  Google Scholar 

  • Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ . (2003). VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301: 513–517.

    Article  CAS  Google Scholar 

  • Cosaert J, Quoix E . (2002). Platinum drugs in the treatment of non-small-cell lung cancer. Br J Cancer 87: 825–833.

    Article  CAS  Google Scholar 

  • Criollo A, Galluzzi L, Chiara Maiuri M, Tasdemir E, Lavandero S, Kroemer G . (2007). Mitochondrial control of cell death induced by hyperosmotic stress. Apoptosis 12: 3–18.

    Article  CAS  Google Scholar 

  • de La Motte Rouge T, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T et al. (2007). A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 67: 6253–6262.

    Article  CAS  Google Scholar 

  • Galluzzi L, Kroemer G . (2007). Mitochondrial apoptosis without VDAC. Nat Cell Biol 9: 487–489.

    Article  CAS  Google Scholar 

  • Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G . (2007). Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12: 803–813.

    Article  CAS  Google Scholar 

  • Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G . (2006). Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13: 1423–1433.

    Article  CAS  Google Scholar 

  • Griffiths GJ, Dubrez L, Morgan CP, Jones NA, Whitehouse J, Corfe BM et al. (1999). Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J Cell Biol 144: 903–914.

    Article  CAS  Google Scholar 

  • Grimm S, Brdiczka D . (2007). The permeability transition pore in cell death. Apoptosis 12: 841–855.

    Article  CAS  Google Scholar 

  • Kepp O, Rajalingam K, Kimmig S, Rudel T . (2007). Bak and Bax are non-redundant during infection- and DNA damage-induced apoptosis. EMBO J 26: 825–834.

    Article  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C . (2007). Mitochondrial membrane permeabilization in cell death. Physiol Rev 87: 99–163.

    Article  CAS  Google Scholar 

  • Lalier L, Cartron PF, Juin P, Nedelkina S, Manon S, Bechinger B et al. (2007). Bax activation and mitochondrial insertion during apoptosis. Apoptosis 12: 887–896.

    Article  CAS  Google Scholar 

  • Lorenzo HK, Susin SA, Penninger J, Kroemer G . (1999). Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 6: 516–524.

    Article  CAS  Google Scholar 

  • Mandic A, Hansson J, Linder S, Shoshan MC . (2003). Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 278: 9100–9106.

    Article  CAS  Google Scholar 

  • Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL et al. (1998). Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027–2031.

    Article  CAS  Google Scholar 

  • Modjtahedi N, Giordanetto F, Madeo F, Kroemer G . (2006). Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16: 264–272.

    Article  CAS  Google Scholar 

  • Olaussen KA, Dunant A, Fouret P, Brambilla E, Andre F, Haddad V et al. (2006). DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355: 983–991.

    Article  CAS  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435: 677–681.

    Article  CAS  Google Scholar 

  • Perfettini JL, Kroemer RT, Kroemer G . (2004). Fatal liaisons of p53 with Bax and Bak. Nat Cell Biol 6: 386–388.

    Article  CAS  Google Scholar 

  • Ravagnan L, Roumier T, Kroemer G . (2002). Mitochondria, the killer organelles and their weapons. J Cell Physiol 192: 131–137.

    Article  CAS  Google Scholar 

  • Reed JC . (2006). Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13: 1378–1386.

    Article  CAS  Google Scholar 

  • Rudin CM, Yang Z, Schumaker LM, VanderWeele DJ, Newkirk K, Egorin MJ et al. (2003). Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance. Cancer Res 63: 312–318.

    CAS  PubMed  Google Scholar 

  • Seve P, Dumontet C . (2005). Chemoresistance in non-small cell lung cancer. Curr Med Chem Anticancer Agents 5: 73–88.

    Article  CAS  Google Scholar 

  • Shafir I, Feng W, Shoshan-Barmataz V . (1998). Voltage-dependent anion channel proteins in synaptosomes of the torpedo electric organ: immunolocalization, purification, and characterization. J Bioenerg Biomembr 30: 499–510.

    Article  CAS  Google Scholar 

  • Shimizu S, Ide T, Yanagida T, Tsujimoto Y . (2000a). Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 275: 12321–12325.

    Article  CAS  Google Scholar 

  • Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y . (2001). Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 152: 237–250.

    Article  CAS  Google Scholar 

  • Shimizu S, Narita M, Tsujimoto Y . (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483–487.

    Article  CAS  Google Scholar 

  • Shimizu S, Shinohara Y, Tsujimoto Y . (2000b). Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene 19: 4309–4318.

    Article  CAS  Google Scholar 

  • Shoshan-Barmatz V, Hadad N, Feng W, Shafir I, Orr I, Varsanyi M et al. (1996). VDAC/porin is present in sarcoplasmic reticulum from skeletal muscle. FEBS Lett 386: 205–210.

    Article  CAS  Google Scholar 

  • Siddik ZH . (2003). Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22: 7265–7279.

    Article  CAS  Google Scholar 

  • Tarze A, Deniaud A, Le Bras M, Maillier E, Molle D, Larochette N et al. (2007). GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene 26: 2606–2620.

    Article  CAS  Google Scholar 

  • Thinnes FP, Schmid A, Benz R, Hilschmann N . (1990). Studies on human porin. III. Does the voltage-dependent anion channel ‘Porin 31HL’ form part of the chloride channel complex, which is observed in different cells and thought to be affected in cystic fibrosis? Biol Chem Hoppe Seyler 371: 1047–1050.

    Article  CAS  Google Scholar 

  • Wang GQ, Gastman BR, Wieckowski E, Goldstein LA, Gambotto A, Kim TH et al. (2001). A role for mitochondrial Bak in apoptotic response to anticancer drugs. J Biol Chem 276: 34307–34317.

    Article  CAS  Google Scholar 

  • Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ et al. (2007). RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447: 864–868.

    Article  Google Scholar 

  • Zamzami N, Kroemer G . (2004). Methods to measure membrane potential and permeability transition in the mitochondria during apoptosis. Methods Mol Biol 282: 103–115.

    CAS  PubMed  Google Scholar 

  • Zamzami N, Kroemer G . (2005). p53 in apoptosis control: an introduction. Biochem Biophys Res Commun 331: 685–687.

    Article  CAS  Google Scholar 

  • Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T et al. (1995). Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182: 367–377.

    Article  CAS  Google Scholar 

  • Zermati Y, Mouhamad S, Stergiou L, Besse B, Galluzzi L, Boehrer S et al. (2007). Non-apoptotic role for Apaf-1 in the DNA damage response. Mol Cell 28: 624–637.

    Article  CAS  Google Scholar 

  • Zhang K, Chew M, Yang EB, Wong KP, Mack P . (2001). Modulation of cisplatin cytotoxicity and cisplatin-induced DNA cross-links in HepG2 cells by regulation of glutathione-related mechanisms. Mol Pharmacol 59: 837–843.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by a special grant from Ligue National contre le cancer (équipe labellisée), as well as by grants from Agence Nationale de Recherche, Agence Nationale pour la Recherche sur le Sida, Cancéropôle Ile-de-France, Fondation pour la Recherche Médicale, Institut National du Cancer, European Commission (ApoSys, RIGHT, Active p53, Trans-Death, DeathTrain, ChemoRes) and Sidaction. NT is recipient of an FRM PhD fellowship. OK is recipient of an EMBO PhD fellowship. LS is funded by a DeathTrain PhD fellowship. EM is recipient of a DeathTrain PhD student fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Kroemer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tajeddine, N., Galluzzi, L., Kepp, O. et al. Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene 27, 4221–4232 (2008). https://doi.org/10.1038/onc.2008.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.63

Keywords

This article is cited by

Search

Quick links