Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NSC348884, a nucleophosmin inhibitor disrupts oligomer formation and induces apoptosis in human cancer cells

Abstract

Nucleophosmin (NPM), a multifunctional nucleolar phosphoprotein is dysregulated in human malignancies leading to anti-apoptosis and inhibition of differentiation. We evaluated the precise three-dimensional structure of NPM based on the highly conserved structure of Xenopus NO38 and its requirement to form dimers and pentamers via its N-terminal domain (residues, 1–107). We hypothesized that a small molecular inhibitor (SMI) that could disrupt the formation of dimers would inhibit aberrant NPM function(s) in cancer cells. Molecular modeling, pharmacophore design, in silico screening and interactive docking identified NSC348884 as a putative NPM SMI that disrupts a defined hydrophobic pocket required for oligomerization. NSC348884 inhibited cell proliferation at an IC50 of 1.7–4.0 μM in distinct cancer cell lines and disrupted NPM oligomer formation by native polyacrylamide gel electrophoresis assay. Treatment of several different cancer cell types with NSC348884 upregulated p53 (increased Ser15 phosphorylation) and induced apoptosis in a dose-dependent manner that correlated with apoptotic markers: H2AX phosphorylation, poly(ADP-ribose) polymerase cleavage and Annexin V labeling. Further, NSC348884 synergized doxorubicin cytotoxicity on cancer cell viability. The data together show that NSC348884 is an SMI of NPM oligomer formation, upregulates p53, induces apoptosis and synergizes with chemotherapy. Hence, an SMI to NPM may be a useful approach to anticancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ahn JY, Liu X, Cheng D, Peng J, Chan PK, Wade PA et al. (2005). Nucleophosmin/B23, a nuclear PI(3,4,5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol Cell 18: 435–445.

    Article  CAS  Google Scholar 

  • Arkin MR, Wells JA . (2004). Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discov 3: 301–317.

    Article  CAS  Google Scholar 

  • Bertwistle D, Sugimoto M, Sherr CJ . (2004). Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 24: 985–996.

    Article  CAS  Google Scholar 

  • Brady SN, Yu Y, Maggi Jr LB, Weber JD . (2004). ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway. Mol Cell Biol 24: 9327–9338.

    Article  CAS  Google Scholar 

  • Chan HJ, Weng JJ, Yung BY . (2005). Nucleophosmin/B23-binding peptide inhibits tumor growth and up-regulates transcriptional activity of p53. Biochem Biophys Res Commun 333: 396–403.

    Article  CAS  Google Scholar 

  • Chan WY, Liu QR, Borjigin J, Busch H, Rennert OM, Tease LA et al. (1989). Characterization of the cDNA encoding human nucleophosmin and studies of its role in normal and abnormal growth. Biochemistry 28: 1033–1039.

    Article  CAS  Google Scholar 

  • Chou YH, Yung BY . (1995). Cell cycle phase-dependent changes of localization and oligomerization states of nucleophosmin/B23. Biochem Biophys Res Commun 217: 313–325.

    Article  CAS  Google Scholar 

  • Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R, Marine JC et al. (2005). Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol 25: 8874–8886.

    Article  CAS  Google Scholar 

  • Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG . (2002). Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4: 529–533.

    Article  CAS  Google Scholar 

  • Fankhauser C, Izaurralde E, Adachi Y, Wingfield P, Laemmli UK . (1991). Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol 11: 2567–2575.

    Article  CAS  Google Scholar 

  • Feuerstein N, Chan PK, Mond JJ . (1988). Identification of numatrin, the nuclear matrix protein associated with induction of mitogenesis, as the nucleolar protein B23. Implication for the role of the nucleolus in early transduction of mitogenic signals. J Biol Chem 263: 10608–10612.

    CAS  PubMed  Google Scholar 

  • Gjerset RA . (2006). DNA damage, p14ARF, nucleophosmin (NPM/B23), and cancer. J Mol Histol 37: 239–251.

    Article  CAS  Google Scholar 

  • Grisendi S, Mecucci C, Falini B, Pandolfi PP . (2006). Nucleophosmin and cancer. Nat Rev Cancer 6: 493–505.

    Article  CAS  Google Scholar 

  • Herrera JE, Correia JJ, Jones AE, Olson MO . (1996). Sedimentation analyses of the salt- and divalent metal ion-induced oligomerization of nucleolar protein B23. Biochemistry 35: 2668–2673.

    Article  CAS  Google Scholar 

  • Hingorani K, Szebeni A, Olson MO . (2000). Mapping the functional domains of nucleolar protein B23. J Biol Chem 275: 24451–24457.

    Article  CAS  Google Scholar 

  • Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R et al. (2003). Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 12: 1151–1164.

    Article  CAS  Google Scholar 

  • Kondo T, Minamino N, Nagamura-Inoue T, Matsumoto M, Taniguchi T, Tanaka N . (1997). Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity. Oncogene 15: 1275–1281.

    Article  CAS  Google Scholar 

  • Korgaonkar C, Hagen J, Tompkins V, Frazier AA, Allamargot C, Quelle FW et al. (2005). Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol 25: 1258–1271.

    Article  CAS  Google Scholar 

  • Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D et al. (2004). Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5: 465–475.

    Article  CAS  Google Scholar 

  • Lee C, Smith BA, Bandyopadhyay K, Gjerset RA . (2005). DNA damage disrupts the p14ARF-B23(nucleophosmin) interaction and triggers a transient subnuclear redistribution of p14ARF. Cancer Res 65: 9834–9842.

    Article  CAS  Google Scholar 

  • Li J, Zhang X, Sejas DP, Bagby GC, Pang Q . (2004). Hypoxia-induced nucleophosmin protects cell death through inhibition of p53. J Biol Chem 279: 41275–41279.

    Article  CAS  Google Scholar 

  • Li J, Zhang X, Sejas DP, Pang Q . (2005). Negative regulation of p53 by nucleophosmin antagonizes stress-induced apoptosis in human normal and malignant hematopoietic cells. Leuk Res 29: 1415–1423.

    Article  CAS  Google Scholar 

  • Li YP, Busch RK, Valdez BC, Busch H . (1996). C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur J Biochem 237: 153–158.

    Article  CAS  Google Scholar 

  • Lim MJ, Wang XW . (2006). Nucleophosmin and human cancer. Cancer Detect Prev 30: 481–490.

    Article  CAS  Google Scholar 

  • Liu Y, Tseng M, Perdreau SA, Rossi F, Antonescu C, Besmer P et al. (2007). Histone H2AX is a mediator of gastrointestinal stromal tumor cell apoptosis following treatment with imatinib mesylate. Cancer Res 67: 2685–2692.

    Article  CAS  Google Scholar 

  • Maiguel DA, Jones L, Chakravarty D, Yang C, Carrier F . (2004). Nucleophosmin sets a threshold for p53 response to UV radiation. Mol Cell Biol 24: 3703–3711.

    Article  CAS  Google Scholar 

  • Namboodiri VM, Akey IV, Schmidt-Zachmann MS, Head JF, Akey CW . (2004). The structure and function of Xenopus NO38-core, a histone chaperone in the nucleolus. Structure 12: 2149–2160.

    Article  CAS  Google Scholar 

  • Naoe T, Suzuki T, Kiyoi H, Urano T . (2006). Nucleophosmin: a versatile molecule associated with hematological malignancies. Cancer Sci 97: 963–969.

    Article  CAS  Google Scholar 

  • Nozawa Y, Van Belzen N, Van der Made AC, Dinjens WN, Bosman FT . (1996). Expression of nucleophosmin/B23 in normal and neoplastic colorectal mucosa. J Pathol 178: 48–52.

    Article  CAS  Google Scholar 

  • Okuda M . (2002). The role of nucleophosmin in centrosome duplication. Oncogene 21: 6170–6174.

    Article  CAS  Google Scholar 

  • Okuwaki M, Matsumoto K, Tsujimoto M, Nagata K . (2001). Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett 506: 272–276.

    Article  CAS  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435: 677–681.

    Article  CAS  Google Scholar 

  • Oost TK, Sun C, Armstrong RC, Al-Assaad AS, Betz SF, Deckwerth TL et al. (2004). Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 47: 4417–4426.

    Article  CAS  Google Scholar 

  • Oren M . (1999). Regulation of the p53 tumor suppressor protein. J Biol Chem 274: 36031–36034.

    Article  CAS  Google Scholar 

  • Patterson SD, Grossman JS, D'Andrea P, Latter GI . (1995). Reduced numatrin/B23/nucleophosmin labeling in apoptotic Jurkat T-lymphoblasts. J Biol Chem 270: 9429–9436.

    Article  CAS  Google Scholar 

  • Qi W, Martinez JD . (2003). Reduction of 14-3-3 proteins correlates with increased sensitivity to killing of human lung cancer cells by ionizing radiation. Radiat Res 160: 217–223.

    Article  CAS  Google Scholar 

  • Shields LB, Gercel-Taylor C, Yashar CM, Wan TC, Katsanis WA, Spinnato JA et al. (1997). Induction of immune responses to ovarian tumor antigens by multiparity. J Soc Gynecol Investig 4: 298–304.

    Article  CAS  Google Scholar 

  • Subong EN, Shue MJ, Epstein JI, Briggman JV, Chan PK, Partin AW . (1999). Monoclonal antibody to prostate cancer nuclear matrix protein (PRO:4-216) recognizes nucleophosmin/B23. Prostate 39: 298–304.

    Article  CAS  Google Scholar 

  • Takemura M, Sato K, Nishio M, Akiyama T, Umekawa H, Yoshida S . (1999). Nucleolar protein B23.1 binds to retinoblastoma protein and synergistically stimulates DNA polymerase alpha activity. J Biochem (Tokyo) 125: 904–909.

    Article  CAS  Google Scholar 

  • Tanaka M, Sasaki H, Kino I, Sugimura T, Terada M . (1992). Genes preferentially expressed in embryo stomach are predominantly expressed in gastric cancer. Cancer Res 52: 3372–3377.

    CAS  PubMed  Google Scholar 

  • Valdez BC, Perlaky L, Henning D, Saijo Y, Chan PK, Busch H . (1994). Identification of the nuclear and nucleolar localization signals of the protein p120. Interaction with translocation protein B23. J Biol Chem 269: 23776–23783.

    CAS  PubMed  Google Scholar 

  • van Belzen N, Diesveld MP, van der Made AC, Nozawa Y, Dinjens WN, Vlietstra R et al. (1995). Identification of mRNAs that show modulated expression during colon carcinoma cell differentiation. Eur J Biochem 234: 843–848.

    Article  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  Google Scholar 

  • Wang D, Umekawa H, Olson MO . (1993). Expression and subcellular locations of two forms of nucleolar protein B23 in rat tissues and cells. Cell Mol Biol Res 39: 33–42.

    CAS  PubMed  Google Scholar 

  • Wang W, Budhu A, Forgues M, Wang XW . (2005). Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Nat Cell Biol 7: 823–830.

    Article  CAS  Google Scholar 

  • Ye K . (2005). Nucleophosmin/B23, a multifunctional protein that can regulate apoptosis. Cancer Biol Ther 4: 918–923.

    Article  CAS  Google Scholar 

  • Yeh CW, Huang SS, Lee RP, Yung BY . (2006). Ras-dependent recruitment of c-Myc for transcriptional activation of nucleophosmin/B23 in highly malignant U1 bladder cancer cells. Mol Pharmacol 70: 1443–1453.

    Article  CAS  Google Scholar 

  • Yung BY, Bor AM, Chan PK . (1990). Short exposure to actinomycin D induces ‘reversible’ translocation of protein B23 as well as ‘reversible’ inhibition of cell growth and RNA synthesis in HeLa cells. Cancer Res 50: 5987–5991.

    CAS  PubMed  Google Scholar 

  • Zhang Y . (2004). The ARF-B23 connection: implications for growth control and cancer treatment. Cell Cycle 3: 259–262.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Elliott Epner at OHSU for encouragement and guidance in conducting research pertaining to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Qi or D Mahadevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, W., Shakalya, K., Stejskal, A. et al. NSC348884, a nucleophosmin inhibitor disrupts oligomer formation and induces apoptosis in human cancer cells. Oncogene 27, 4210–4220 (2008). https://doi.org/10.1038/onc.2008.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.54

Keywords

This article is cited by

Search

Quick links