Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epidermal growth factor-dependent cyclooxygenase-2 induction in gliomas requires protein kinase C-δ

Abstract

Earlier, we showed that epidermal growth factor receptor (EGFR) signaling in human glioma cells increased cyclooxygenase-2 (COX-2) expression through p38-mitogen-activated protein kinase (MAPK)-dependent activation of the Sp family of transcription factors. Further mechanistic details of EGFR-dependent induction of COX-2 expression in glioma cells remained elusive. Protein kinase Cs (PKCs) comprise a family of serine-threonine kinases that are major mediators of signaling from receptor tyrosine kinases. Here, we report that PKC-δ, a novel PKC isoform, plays a role in EGF-dependent COX-2 induction in human glioma cells. Pharmacological inhibition and genetic silencing (through siRNA or dominant-negative expression) of PKC-δ confirm a role for this PKC isoform in EGF-dependent COX-2 induction. Overexpression of a functional PKC-δ enhanced COX-2 expression indicating that PKC-δ is not only necessary but also sufficient to regulate COX-2 levels. Inhibition of p38-MAPK pharmacologically or with siRNA further shows that p38-MAPK is required for activation of PKC-δ by EGF while inhibition of PKC-δ had no discernible effects on p38-MAPK activation. Finally, EGF stimulation promotes physical interactions between PKC-δ and Sp1 resulting in phosphorylation and nuclear localization of this transcription factor. These data provide the first evidence that PKC-δ is a critical link between p38-MAPK and Sp1-dependent COX-2 expression in human glioma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abbott KL, Loss II JR, Robida AM, Murphy TJ . (2000). Evidence that Galpha(q)-coupled receptor-induced interleukin-6 mRNA in vascular smooth muscle cells involves the nuclear factor of activated T cells. Mol Pharmacol 58: 946–953.

    Article  CAS  Google Scholar 

  • Awasthi V, King RJ . (2000). PKC, p42/p44 MAPK, and p38 MAPK are required for HGF-induced proliferation of H441 cells. Am J Physiol Lung Cell Mol Physiol 279: L942–L949.

    Article  CAS  Google Scholar 

  • Baltuch GH, Yong VW . (1996). Signal transduction for proliferation of glioma cells in vitro occurs predominantly through a protein kinase C-mediated pathway. Brain Res 710: 143–149.

    Article  CAS  Google Scholar 

  • Bijnsdorp IV, van den Berg J, Kuipers GK, Wedekind LE, Slotman BJ, van Rijn J et al. (2007). Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells. J Neurooncol 85: 25–31.

    Article  CAS  Google Scholar 

  • Bornancin F, Parker PJ . (1997). Phosphorylation of protein kinase C-alpha on serine 657 controls the accumulation of active enzyme and contributes to its phosphatase-resistant state. J Biol Chem 272: 3544–3549.

    Article  CAS  Google Scholar 

  • Bredel M, Pollack IF . (1997). The role of protein kinase C (PKC) in the evolution and proliferation of malignant gliomas, and the application of PKC inhibition as a novel approach to anti-glioma therapy. Acta Neurochir (Wien) 139: 1000–1013.

    Article  CAS  Google Scholar 

  • Buccoliero AM, Caldarella A, Gheri CF, Taddei A, Paglierani M, Pepi M et al. (2006). Inducible cyclooxygenase (COX-2) in glioblastoma—clinical and immunohistochemical (COX-2-VEGF) correlations. Clin Neuropathol 25: 59–66.

    CAS  PubMed  Google Scholar 

  • Chupreta S, Du M, Todisco A, Merchant JL . (2000). EGF stimulates gastrin promoter through activation of Sp1 kinase activity. Am J Physiol Cell Physiol 278: C697–C708.

    Article  CAS  Google Scholar 

  • Couldwell WT, Antel JP, Apuzzo ML, Yong VW . (1990). Inhibition of growth of established human glioma cell lines by modulators of the protein kinase-C system. J Neurosurg 73: 594–600.

    Article  CAS  Google Scholar 

  • Couldwell WT, Uhm JH, Antel JP, Yong VW . (1991). Enhanced protein kinase C activity correlates with the growth rate of malignant gliomas in vitro. Neurosurgery 29: 880–886; discussion 886–7.

    Article  CAS  Google Scholar 

  • D’Addario M, Arora PD, Ellen RP, McCulloch CA . (2002). Interaction of p38 and Sp1 in a mechanical force-induced, beta 1 integrin-mediated transcriptional circuit that regulates the actin-binding protein filamin-A. J Biol Chem 277: 47541–47550.

    Article  Google Scholar 

  • D’Addario M, Arora PD, McCulloch CA . (2006). Role of p38 in stress activation of Sp1. Gene 379: 51–61.

    Article  Google Scholar 

  • Doller A, Huwiler A, Muller R, Radeke HH, Pfeilschifter J, Eberhardt W . (2007). Protein kinase C alpha-dependent phosphorylation of the mRNA-stabilizing factor HuR: implications for posttranscriptional regulation of cyclooxygenase-2. Mol Biol Cell 18: 2137–2148.

    Article  CAS  Google Scholar 

  • Guan Z, Buckman SY, Miller BW, Springer LD, Morrison AR . (1998). Interleukin-1beta-induced cyclooxygenase-2 expression requires activation of both c-Jun NH2-terminal kinase and p38 MAPK signal pathways in rat renal mesangial cells. J Biol Chem 273: 28670–28676.

    Article  CAS  Google Scholar 

  • Hofmann J . (2004). Protein kinase C isozymes as potential targets for anticancer therapy. Curr Cancer Drug Targets 4: 125–146.

    Article  CAS  Google Scholar 

  • Hsieh HL, Wang HH, Wu CY, Jou MJ, Yen MH, Parker P et al. (2007). BK-induced COX-2 expression via PKC-delta-dependent activation of p42/p44 MAPK and NF-kappaB in astrocytes. Cell Signal 19: 330–340.

    Article  CAS  Google Scholar 

  • Humphrey PA, Gangarosa LM, Wong AJ, Archer GE, Lund-Johansen M, Bjerkvig R et al. (1991). Deletion-mutant epidermal growth factor receptor in human gliomas: effects of type II mutation on receptor function. Biochem Biophys Res Commun 178: 1413–1420.

    Article  CAS  Google Scholar 

  • Iwabu A, Smith K, Allen FD, Lauffenburger DA, Wells A . (2004). Epidermal growth factor induces fibroblast contractility and motility via a protein kinase C delta-dependent pathway. J Biol Chem 279: 14551–14560.

    Article  CAS  Google Scholar 

  • Joki T, Heese O, Nikas DC, Bello L, Zhang J, Kraeft SK et al. (2000). Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res 60: 4926–4931.

    CAS  PubMed  Google Scholar 

  • Kang KB, Wang TT, Woon CT, Cheah ES, Moore XL, Zhu C et al. (2007). Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: inhibition of tumor angiogenesis with extensive tumor necrosis. Int J Radiat Oncol Biol Phys 67: 888–896.

    Article  CAS  Google Scholar 

  • Karim A, McCarthy K, Jawahar A, Smith D, Willis B, Nanda A . (2005). Differential cyclooxygenase-2 enzyme expression in radiosensitive versus radioresistant glioblastoma multiforme cell lines. Anticancer Res 25: 675–679.

    CAS  PubMed  Google Scholar 

  • Kuwahara J, Watanabe Y, Kayasuga T, Itoh K . (2000). Zn finger and nuclear localization of transcription factor Sp1. Nucleic Acids Symp Ser 44: 265–266.

    Article  Google Scholar 

  • Lee J, Kosaras B, Aleyasin H, Han JA, Park DS, Ratan RR et al. (2006a). Role of cyclooxygenase-2 induction by transcription factor Sp1 and Sp3 in neuronal oxidative and DNA damage response. FASEB J 20: 2375–2377.

    Article  CAS  Google Scholar 

  • Lee MY, Park SH, Lee YJ, Heo JS, Lee JH, Han HJ . (2006b). EGF-induced inhibition of glucose transport is mediated by PKC and MAPK signal pathways in primary cultured chicken hepatocytes. Am J Physiol Gastrointest Liver Physiol 291: G744–G750.

    Article  CAS  Google Scholar 

  • Li B, Yuan M, Kim IA, Chang CM, Bernhard EJ, Shu HK . (2004). Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 23: 4594–4602.

    Article  CAS  Google Scholar 

  • Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H et al. (1985). Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313: 144–147.

    Article  CAS  Google Scholar 

  • Machide M, Kamitori K, Nakamura Y, Kohsaka S . (1998). Selective activation of phospholipase C gamma1 and distinct protein kinase C subspecies in intracellular signaling by hepatocyte growth factor/scatter factor in primary cultured rat neocortical cells. J Neurochem 71: 592–602.

    Article  CAS  Google Scholar 

  • Martelli AM, Faenza I, Billi AM, Fala F, Cocco L, Manzoli L . (2003). Nuclear protein kinase C isoforms: key players in multiple cell functions? Histol Histopathol 18: 1301–1312.

    CAS  PubMed  Google Scholar 

  • Merchant JL, Du M, Todisco A . (1999). Sp1 phosphorylation by Erk 2 stimulates DNA binding. Biochem Biophys Res Commun 254: 454–461.

    Article  CAS  Google Scholar 

  • Mimura Y, Ihn H, Jinnin M, Asano Y, Yamane K, Tamaki K . (2004). Epidermal growth factor induces fibronectin expression in human dermal fibroblasts via protein kinase C delta signaling pathway. J Invest Dermatol 122: 1390–1398.

    Article  CAS  Google Scholar 

  • Moriya M, Tanaka S . (1994). Prominent expression of protein kinase C (gamma) mRNA in the dendrite-rich neuropil of mice cerebellum at the critical period for synaptogenesis. Neuroreport 5: 929–932.

    Article  CAS  Google Scholar 

  • Murphy TJ, Pavlath GK, Wang X, Boss V, Abbott KL, Robida AM et al. (2002). Retroviral vectors applied to gene regulation studies. Methods Enzymol 345: 539–551.

    Article  CAS  Google Scholar 

  • Musashi M, Ota S, Shiroshita N . (2000). The role of protein kinase C isoforms in cell proliferation and apoptosis. Int J Hematol 72: 12–19.

    CAS  PubMed  Google Scholar 

  • Newton AC . (1997). Regulation of protein kinase C. Curr Opin Cell Biol 9: 161–167.

    Article  CAS  Google Scholar 

  • Nishizuka Y . (1995). Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9: 484–496.

    Article  CAS  Google Scholar 

  • Pal S, Claffey KP, Cohen HT, Mukhopadhyay D . (1998). Activation of Sp1-mediated vascular permeability factor/vascular endothelial growth factor transcription requires specific interaction with protein kinase C zeta. J Biol Chem 273: 26277–26280.

    Article  CAS  Google Scholar 

  • Pang L, Nie M, Corbett L, Donnelly R, Gray S, Knox AJ . (2002). Protein kinase C-epsilon mediates bradykinin-induced cyclooxygenase-2 expression in human airway smooth muscle cells. FASEB J 16: 1435–1437.

    Article  CAS  Google Scholar 

  • Park YS, Kim J, Misonou Y, Takamiya R, Takahashi M, Freeman MR et al. (2007). Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase. Arterioscler Thromb Vasc Biol 27: 1319–1325.

    Article  CAS  Google Scholar 

  • Pollack IF, Randall MS, Kristofik MP, Kelly RH, Selker RG, Vertosick Jr FT . (1990). Response of malignant glioma cell lines to activation and inhibition of protein kinase C-mediated pathways. J Neurosurg 73: 98–105.

    Article  CAS  Google Scholar 

  • Prayson RA, Castilla EA, Vogelbaum MA, Barnett GH . (2002). Cyclooxygenase-2 (COX-2) expression by immunohistochemistry in glioblastoma multiforme. Ann Diagn Pathol 6: 148–153.

    Article  Google Scholar 

  • Rafty LA, Khachigian LM . (2001). Sp1 phosphorylation regulates inducible expression of platelet-derived growth factor B-chain gene via atypical protein kinase C-zeta. Nucleic Acids Res 29: 1027–1033.

    Article  CAS  Google Scholar 

  • Reisinger K, Kaufmann R, Gille J . (2003). Increased Sp1 phosphorylation as a mechanism of hepatocyte growth factor (HGF/SF)-induced vascular endothelial growth factor (VEGF/VPF) transcription. J Cell Sci 116: 225–238.

    Article  CAS  Google Scholar 

  • Rojo AI, Salina M, Salazar M, Takahashi S, Suske G, Calvo V et al. (2006). Regulation of heme oxygenase-1 gene expression through the phosphatidylinositol 3-kinase/PKC-zeta pathway and Sp1. Free Radic Biol Med 41: 247–261.

    Article  CAS  Google Scholar 

  • Rosell R, Taron M, Reguart N, Isla D, Moran T . (2006). Epidermal growth factor receptor activation: how exon 19 and 21 mutations changed our understanding of the pathway. Clin Cancer Res 12: 7222–7231.

    Article  CAS  Google Scholar 

  • Shono T, Tofilon PJ, Bruner JM, Owolabi O, Lang FF . (2001). Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res 61: 4375–4381.

    CAS  PubMed  Google Scholar 

  • Sminia P, Stoter TR, van der Valk P, Elkhuizen PH, Tadema TM, Kuipers GK et al. (2005). Expression of cyclooxygenase-2 and epidermal growth factor receptor in primary and recurrent glioblastoma multiforme. J Cancer Res Clin Oncol 131: 653–661.

    Article  CAS  Google Scholar 

  • Soh JW, Lee EH, Prywes R, Weinstein IB . (1999). Novel roles of specific isoforms of protein kinase C in activation of the c-fos serum response element. Mol Cell Biol 19: 1313–1324.

    Article  CAS  Google Scholar 

  • Subbaramaiah K, Chung WJ, Dannenberg AJ . (1998). Ceramide regulates the transcription of cyclooxygenase-2. Evidence for involvement of extracellular signal-regulated kinase/c-Jun N-terminal kinase and p38 mitogen-activated protein kinase pathways. J Biol Chem 273: 32943–32949.

    Article  CAS  Google Scholar 

  • Wang HQ, Kim MP, Tiano HF, Langenbach R, Smart RC . (2001). Protein kinase C-alpha coordinately regulates cytosolic phospholipase A(2) activity and the expression of cyclooxygenase-2 through different mechanisms in mouse keratinocytes. Mol Pharmacol 59: 860–866.

    Article  CAS  Google Scholar 

  • Xu K, Murphy TJ . (2000). Reconstitution of angiotensin receptor mRNA down-regulation in vascular smooth muscle. Post-transcriptional control by protein kinase a but not mitogenic signaling directed by the 5′-untranslated region. J Biol Chem 275: 7604–7611.

    Article  CAS  Google Scholar 

  • Xu K, Shu HK . (2007). EGFR activation results in enhanced cyclooxygenase-2 expression through p38 mitogen-activated protein kinase-dependent activation of the Sp1/Sp3 transcription factors in human gliomas. Cancer Res 67: 6121–6129.

    Article  CAS  Google Scholar 

  • Xu Q, Ji YS, Schmedtje Jr JF . (2000). Sp1 increases expression of cyclooxygenase-2 in hypoxic vascular endothelium. Implications for the mechanisms of aortic aneurysm and heart failure. J Biol Chem 275: 24583–24589.

    Article  CAS  Google Scholar 

  • Yu W, Murray NR, Weems C, Chen L, Guo H, Ethridge R et al. (2003). Role of cyclooxygenase 2 in protein kinase C beta II-mediated colon carcinogenesis. J Biol Chem 278: 11167–11174.

    Article  CAS  Google Scholar 

  • Zheng XL, Matsubara S, Diao C, Hollenberg MD, Wong NC . (2001). Epidermal growth factor induction of apolipoprotein A-I is mediated by the Ras-MAP kinase cascade and Sp1. J Biol Chem 276: 13822–13829.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported, in part, by a grant to H-K Shu from the Childhood Brain Tumor Foundation. We thank Dr Jiahuai Han for providing mammalian expression plasmids-containing MKK3 and MKK6 and Dr Jae-Won Soh for providing mammalian expression plasmids-containing PKC-δ variants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-K G Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, K., Chang, CM., Gao, H. et al. Epidermal growth factor-dependent cyclooxygenase-2 induction in gliomas requires protein kinase C-δ. Oncogene 28, 1410–1420 (2009). https://doi.org/10.1038/onc.2008.500

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.500

Keywords

This article is cited by

Search

Quick links