Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Runx3 expression in gastrointestinal tract epithelium: resolving the controversy

Abstract

We reported earlier that RUNX3 is expressed in human and mouse gastrointestinal tract (GIT) epithelium and that it functions as a tumor suppressor in gastric and colorectal tissues. However, there have been conflicting reports describing the absence of Runx3 in GIT epithelial cells. A part of the controversy may be derived from the use of a specific antibody by other groups (referred to as G-poly). Here, we show further evidence to support our earlier observations and provide a possible explanation for this apparent controversy. We generated multiple anti-RUNX3 monoclonal antibodies and found that RUNX3 antibodies recognizing the RUNX3 N-terminal region (residues 1–234) react with RUNX3 in gastric epithelial cells, whereas those recognizing the C-terminal region (beyond residue 234) did not. G-poly primarily recognizes the region beyond 234 and hence, is unable to detect Runx3 in this tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Brenner O, Levanon D, Negreanu V, Golubkov O, Fainaru O, Woolf E et al. (2004). Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc Natl Acad Sci USA 101: 16016–16021.

    Article  CAS  Google Scholar 

  • Carvalho R, Milne ANA, Polak M, Corver WE, Offerhaus GJA, Weterman MAJ . (2005). Exclusion of RUNX3 as a tumour-suppressor gene in early-onset gastric carcinomas. Oncogene 24: 8252–8258.

    Article  CAS  Google Scholar 

  • Chen CL, Broom DC, Liu Y, de Nooij JC, Li Z, Cen C et al. (2006a). Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 49: 365–377.

    Article  CAS  Google Scholar 

  • Chen AI, de Nooij JC, Jessell TM . (2006b). Graded activity of transcription factor runx3 specifies the laminar termination pattern of sensory axons in the developing spinal cord. Neuron 49: 395–408.

    Article  CAS  Google Scholar 

  • Chi XZ, Yang JO, Lee KY, Ito K, Sakakura C, Li QL et al. (2005). RUNX3 suppresses gastric epithelial cell growth by inducing p21WAF/Cip1 expression in cooperation with transforming growth factor β-activated SMAD. Mol Cell Biol 25: 8097–8107.

    Article  CAS  Google Scholar 

  • Inoue Ki, Ozaki S, Shiga T, Ito K, Masuda T, Okado N et al. (2002). Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat Neurosci 5: 946–954.

    Article  CAS  Google Scholar 

  • Inoue Ki, Ito K, Osato M, Lee B, Bae SC, Ito Y . (2007). The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons. J Biol Chem 282: 24175–24184.

    Article  CAS  Google Scholar 

  • Ito K, Liu Q, Salto-Tellez M, Yano T, Tada K, Ida H et al. (2005). RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res 65: 7743–7750.

    Article  CAS  Google Scholar 

  • Ito K, Lim ACB, Salto-Tellez M, Motoda L, Osato M, Chuang LSH et al. (2008). RUNX3 attenuates β-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 14: 226–237.

    Article  CAS  Google Scholar 

  • Ito Y . (2008). RUNX genes in development and cancer: regulation of viral gene expression and the discovery of RUNX family genes. Adv Cancer Res 99: 33–76.

    Article  CAS  Google Scholar 

  • Katuri V, Tang Y, Li C, Jogunoori W, Deng CX, Rashid A et al. (2006). Critical interactions between TGF-β signaling/ELF, and E-cadherin/β-catenin mediated tumor suppression. Oncogene 25: 1871–1886.

    Article  CAS  Google Scholar 

  • Kramer I, Sigrist M, de Nooij JC, Taniuchi I, Jessell TM, Arber S . (2006). A role for runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 49: 379–393.

    Article  CAS  Google Scholar 

  • Le XF, Groner Y, Kornblau SM, Gu Y, Hittelman WN, Levanon D et al. (1999). Regulation of AML2/CBFA3 in hematopoietic cells through the retinoic acid receptor α-dependent signaling pathway. J Biol Chem 274: 21651–21658.

    Article  CAS  Google Scholar 

  • Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R et al. (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 21: 3454–3463.

    Article  CAS  Google Scholar 

  • Levanon D, Brenner O, Negreanu V, Bettoun D, Woolf E, Eilam R et al. (2001). Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mech Dev 109: 413–417.

    Article  CAS  Google Scholar 

  • Levanon D, Brenner O, Otto F, Groner Y . (2003). Runx3 knockouts and stomach cancer. EMBO Rep 4: 560–564.

    Article  CAS  Google Scholar 

  • Li QL, Ito K, Sakakura C, Fukamachi H, Inoue Ki, Chi XZ et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109: 113–124.

    Article  CAS  Google Scholar 

  • Marmigère F, Montelius A, Wegner M, Groner Y, Reichardt LF, Ernfors P . (2006). The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nat Neurosci 9: 180–187.

    Article  Google Scholar 

  • Nakamura S, Senzaki K, Yoshikawa M, Nishimura M, Inoue Ki, Ito Y et al. (2008). Dynamic regulation of the expression of neurotrophin receptors by Runx3. Development 135: 1703–1711.

    Article  CAS  Google Scholar 

  • Osaki M, Moriyama M, Adachi K, Nakada C, Takeda A, Inoue Y et al. (2004). Expression of RUNX3 protein in human gastric mucosa, intestinal metaplasia and carcinoma. Eur J Clin Invest 34: 605–612.

    Article  CAS  Google Scholar 

  • Oshimo Y, Oue N, Mitani Y, Nakayama H, Kitadai Y, Yoshida K et al. (2004). Frequent loss of RUNX3 expression by promoter hypermethylation in gastric carcinoma. Pathobiology 71: 137–143.

    Article  CAS  Google Scholar 

  • Peng Z, Wei D, Wang L, Tang H, Zhang J, Le X et al. (2006). RUNX3 inhibits the expression of vascular endothelial growth factor and reduces the angiogenesis, growth, and metastasis of human gastric cancer. Clin Cancer Res 12: 6386–6394.

    Article  CAS  Google Scholar 

  • Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T et al. (2002). Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111: 621–633.

    Article  CAS  Google Scholar 

  • Torquati A, O'Rear L, Longobardi L, Spagnoli A, Richards WO, Beauchamp RD . (2004). RUNX3 inhibits cell proliferation and induces apoptosis by reinstating transforming growth factor beta responsiveness in esophageal adenocarcinoma cells. Surgery 136: 310–316.

    Article  Google Scholar 

  • Usui T, Aoyagi K, Saeki N, Nakanishi Y, Kanai Y, Ohki M et al. (2006). Expression status of RUNX1/AML1 in normal gastric epithelium and its mutational analysis in microdissected gastric cancer cells. Int J Oncol 29: 779–784.

    CAS  PubMed  Google Scholar 

  • Wei D, Gong W, Oh SC, Li Q, Kim WD, Wang L et al. (2005). Loss of RUNX3 expression significantly affects the clinical outcome of gastric cancer patients and its restoration causes drastic suppression of tumor growth and metastasis. Cancer Res 65: 4809–4816.

    Article  CAS  Google Scholar 

  • Woolf E, Xiao C, Fainaru O, Lotem J, Rosen D, Negreanu VB et al. (2003). Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc Natl Acad Sci USA 100: 7731–7736.

    Article  CAS  Google Scholar 

  • Yano T, Ito K, Fukamachi H, Chi XZ, Wee HJ, Inoue Ki et al. (2006). The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing TGF-β-induced apoptosis. Mol Cell Biol 26: 4474–4488.

    Article  CAS  Google Scholar 

  • Zavros Y, Eaton KA, Kang W, Rathinavelu S, Katukuri V, Kao JY et al. (2005). Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene 24: 2354–2366.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, K., Inoue, Ki., Bae, SC. et al. Runx3 expression in gastrointestinal tract epithelium: resolving the controversy. Oncogene 28, 1379–1384 (2009). https://doi.org/10.1038/onc.2008.496

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.496

Keywords

This article is cited by

Search

Quick links