Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A non-Smad mechanism of fibroblast activation by transforming growth factor-β via c-Abl and Egr-1: selective modulation by imatinib mesylate

Abstract

The nonreceptor protein tyrosine kinase c-Abl regulates cell proliferation and survival. Recent studies provide evidence that implicate c-Abl as a mediator for fibrotic responses induced by transforming growth factor-β (TGF-β), but the precise mechanisms underlying this novel oncogene function are unknown. Here, we report that when expressed in normal fibroblasts, a constitutively active mutant of Abl that causes chronic myelogenous leukemia (CML) stimulated the expression and transcriptional activity of the early growth response factor 1 (Egr-1). Mouse embryonic fibroblasts (MEFs), lacking c-Abl, were resistant to TGF-β stimulation. Responsiveness of these MEFs to TGF-β could be rescued by wild-type c-Abl, but not by a kinase-deficient mutant form of c-Abl. Furthermore, Abl kinase activity was necessary for the induction of Egr-1 by TGF-β in normal fibroblasts, and Egr-1 was required for stimulation of collagen by Bcr-Abl. Lesional skin fibroblasts in mice with bleomycin-induced fibrosis of skin displayed evidence of c-Abl activation in situ, and elevated phospho-c-Abl correlated with increased local expression of Egr-1. Collectively, these results position Egr-1 downstream of c-Abl in the fibrotic response, delineate a novel Egr-1-dependent intracellular signaling mechanism that underlies the involvement of c-Abl in certain TGF-β responses, and identify Egr-1 as a target of inhibition by imatinib. Furthermore, the findings show in situ activation of c-Abl paralleling the upregulated tissue expression of Egr-1 that accompanies fibrosis. Pharmacological targeting of c-Abl and its downstream effector pathways may, therefore, represent a novel therapeutic approach to blocking TGF-β-dependent fibrotic processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Bhattacharyya S, Chen S-J, Wu M, Warner-Blankenship M, Ning H, Lakos G et al. (2008). Smad-independent TGF-β regulation of transcription factor Egr-1 and sustained expression in fibrosis: implications for scleroderma. Am J Path 173: 1085–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchwalter G, Gross C, Wasylyk B . (2004). Ets ternary complex transcription factors. Gene 324: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Bonner JC . (2004). Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth factor Rev 4: 255–273.

    Article  Google Scholar 

  • Ceni E, Crabb DW, Foschi M, Mello T, Taricchi M, Patussi V et al. (2006). Acetaldehyde inhibits PPAR-g via H2O2-mediated c-Abl activation in human hepatic stellate cells. Gastroenterology 131: 1235–1252.

    Article  CAS  PubMed  Google Scholar 

  • Che W, Abe J, Yoshizumi M, Huang Q, Glassman M, Ohta S et al. (2001). p160 Bcr mediates platelet-derived growth factor activation of extracellular signal-regulated kinase in vascular smooth muscle cells. Circulation 104: 1399–1406.

    Article  CAS  PubMed  Google Scholar 

  • Chen SJ, Ning H, Ishida W, Sodin-Semrl S, Takagawa S, Mori Y et al. (2006). The early-immediate gene EGR-1 is induced by transforming growth factor-beta and mediates stimulation of collagen gene expression. J Biol Chem 281: 21183–21197.

    Article  CAS  PubMed  Google Scholar 

  • Chen SJ, Yuan W, Mori Y, Levenson A, Trojanowska M, Varga J . (1999). Stimulation of Type I collagen transcription in human skin fibroblasts by TGF-β: involvement of Smad 3. J of Invest Dermatol 112: 49–57.

    Article  CAS  Google Scholar 

  • Danial NN, Rothman P . (2000). JAK-STAT signaling activated by Abl oncogenes. Oncogene 19: 2523–2531.

    Article  CAS  PubMed  Google Scholar 

  • Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH et al. (2004). Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest 114: 1308–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deininger MW, Goldman JM, Lydon N, Melo JV . (1997). The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 90: 3691–3698.

    CAS  PubMed  Google Scholar 

  • Distler JH, Jüngel A, Huber LC, Schulze-Horsel U, Zwerina J, Gay RE et al. (2007). Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum 56: 311–322.

    Article  CAS  PubMed  Google Scholar 

  • Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  • Gashler A, Sukhatme VP . (1995). Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol 50: 191–224.

    Article  CAS  PubMed  Google Scholar 

  • Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G . (1984). Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome. Cell 36: 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Goldman JM, Melo JV . (2003). Chronic myeloid leukemia--advances in biology and new approaches to treatment. N Engl J Med 349: 1451–1464.

    Article  CAS  PubMed  Google Scholar 

  • Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P . (2002). Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21: 1743–1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X . (2006). Unwinding a Path to Nuclear β-Catenin. Cell 127: 40–42.

    Article  CAS  PubMed  Google Scholar 

  • Hernández SE, Krishnaswami M, Miller AL, Koleske AJ . (2004). How do Abl family kinases regulate cell shape and movement? Review Trends Cell Biol 14: 36–44.

    Article  PubMed  Google Scholar 

  • Ihn H, LeRoy EC, Trojanowska M . (1997). Oncostatin M stimulates transcription of the human α2 (I) collagen gene via the Sp1/Sp3-binding site. J Biol Chem 272: 24666–24672.

    Article  CAS  PubMed  Google Scholar 

  • Ishida W, Bhattacharyya S, Hinchcliff M, Mori Y, Takehara K, Varga J . (2006). Novel role of c-Abl tyrosine kinase in profibrotic TGF-Beta responses: Selective modulation by the anticancer drug imatinib methylate (gleevec). Arthritis Rheum 54: S776.

    Google Scholar 

  • Javelaud D, Mauviel A . (2005). Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 24: 5742–5750.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez SA, Derk CT . (2004). Following the molecular pathways toward an understanding of the pathogenesis of systemic sclerosis. Ann Intern Med 140: 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Khachigian LM . (2006). Early growth response-1 in cardiovascular pathobiology. Circ Res 98: 186–191.

    Article  CAS  PubMed  Google Scholar 

  • Kharbanda SP, Pandey S, Jin S, Inoue A, Bharti Z-M, Yuan R et al. (1997). Functional interaction of DNA-PK and c-Abl in response to DNA damage. Nature 386: 732–735.

    Article  CAS  PubMed  Google Scholar 

  • Kharbanda SP, Pandey R, Ren S, Feller B, Mayer L, Zon et al. (1995a). c-Abl activation regulates induction of the SEK1/stress activated protein kinase pathway in the cellular response to 1-β-D-arabinofuranosylcytosine. J Biol Chem 270: 30278–30281.

    Article  CAS  PubMed  Google Scholar 

  • Kharbanda SR, Ren P, Pandey TD, Shafman SM, Feller RR, Weichselbaum et al. (1995b). Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature 376: 785–788.

    Article  CAS  PubMed  Google Scholar 

  • Kharas MG, Fruman DA . (2005). ABL oncogenes and phosphoinositide 3-kinase: mechanism of activation and downstream effectors. Cancer Res 65: 2047–2053.

    Article  CAS  PubMed  Google Scholar 

  • Lakos G, Takagawa S, Chen SJ, Ferreira AM, Han G, Masuda K et al. (2004). Targeted disruption of TGF-beta/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol 165: 203–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Rosée P, Johnson K, O’Dwyer ME, Druker BJ . (2002). In vitro studies of the combination of imatinib mesylate (Gleevec) and arsenic trioxide (Trisenox) in chronic myelogenous leukemia. Exp Hematol 30: 729–737.

    Article  PubMed  Google Scholar 

  • Lewis JM, Baskaran R, Taagepera S, Schwartz MA, Wang JY . (1996). Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc Natl Acad Sci U S A 93: 15174 –15179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JM, Schwartz MA . (1998). Integrins regulate the association and phosphorylation of paxillin by c-Abl. J Biol Chem 273: 14225–14230.

    Article  CAS  PubMed  Google Scholar 

  • Leask A . (2008). Targeting the TGFβ, endothelin-1 and CCN2 axis to combat fibrosis in scleroderma. Cellular Signalling 20: 1409–1414.

    Article  CAS  PubMed  Google Scholar 

  • Lugo TG, Pendergast AM, Muller AJ, Witte ON . (1990). Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  • Massagueé J, Seoane J, Wotton D . (2005). Smad transcription factors. Genes Dev 19: 2783–2810.

    Article  Google Scholar 

  • Mori Y, Chen SJ, Varga J . (2000). Modulation of endogenous Smad expression in normal skin fibroblasts by transforming growth factor-beta. Exp Cell Res 258: 374–383.

    Article  CAS  PubMed  Google Scholar 

  • Mori Y, Ishida W, Bhattacharyya S, Li Y, Platanias LC, Varga J . (2004). Selective inhibition of activin receptor-like kinase 5 signaling blocks profibrotic transforming growth factor beta responses in skin fibroblasts. Arthritis Rheum 50: 4008–4021.

    Article  CAS  PubMed  Google Scholar 

  • Moustakas A, Heldin CH: Non-Javelaud D, Mauviel . (2005). A Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 24: 5742–5750.

    Article  Google Scholar 

  • Pannu J, Asano Y, Nakerakanti S, Smith E, Jablonska S, Blaszczyk M et al. (2008). Smad1 pathway is activated in systemic sclerosis fibroblasts and is targeted by imatinib mesylate. Arthritis Rheum 58: 2528–2537.

    Article  CAS  PubMed  Google Scholar 

  • Pannu J, Nakerakanti S, Smith E, ten Dijke P, Trojanowska M . (2007). Transforming growth factor-beta receptor type I-dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways. J Biol Chem 282: 10405–10413.

    Article  CAS  PubMed  Google Scholar 

  • Pannu J, Trojanowska M . (2004). Recent advances in fibroblast signaling and biology in scleroderma. Curr Opin Rheumatology 6: 739–745.

    Article  Google Scholar 

  • Raitano AB, Halpern JR, Hambuch TM, Sawyers CL . (1995). The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci USA 92: 11746–11755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumar VS, Shiwen X, Bostrom M, Leoni P, Muddle J, Ivarsson M et al. (2006). Platelet-derived growth factor-β receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol 169: 2254–2265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renshawa MW, Lewisa JM, Schwartz MA . (2000). The c-Abl tyrosine kinase contributes to the transient activation of MAP kinase in cells plated on fibronectin. Oncogene 19: 3216–3219.

    Article  Google Scholar 

  • Rosenbloom J, Jiménez SA . (2008). Molecular ablation of transforming growth factor beta signaling pathways by tyrosine kinase inhibition: the coming of a promising new era in the treatment of tissue fibrosis. Arthritis Rheum 58: 2219–2224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley JD . (1973). Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243: 290–293.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Arévalo Lobo VJ, Aceves Luquero CI, Alvarez-Vallina L, Tipping AJ, Viniegra JG, Hernández Losa J . (2005). Modulation of the p38 MAPK (mitogen-activated protein kinase) pathway through Bcr/Abl: implications in the cellular response to Ara-C. Biochem J 387: 231–238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schubert C, Schalk-Hihi C, Struble GT, Ma HC, Petrounia IP, Brandt B et al. (2007). Crystal structure of the tyrosine kinase domain of colony-stimulating factor-1 receptor (cFMS) in complex with two inhibitors. J Biol Chem 282: 4094–4101.

    Article  CAS  PubMed  Google Scholar 

  • Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK et al. (1997). Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 16: 6151–6161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukhatme VP, Cao XM, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PC et al. (1988). A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53: 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Stuart JR, Kawai H, Tsai KK, Chuang EY, Yuan ZM . (2005). c-Abl regulates early growth response protein (EGR1) in response to oxidative stress. Oncogene 24: 8085–8092.

    Article  CAS  PubMed  Google Scholar 

  • Svaren J, Ehrig T, Abdulkadir SA, Ehrengruber MU, Watson MA, Milbrandt J . (2000). EGR1 target genes in prostate carcinoma cells identified by microarray analysis. J Biol Chem 275: 38524–38531.

    Article  CAS  PubMed  Google Scholar 

  • Takagawa S, Lakos G, Mori Y, Yamamoto T, Nishioka K, Varga J . (2003). Sustained activation of fibroblast transforming growth factor-beta/Smad signaling in a murine model of scleroderma. J Invest Dermatol 121: 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Abe H, Arai H, Matsubara T, Nagai K, Matsuura M et al. (2005). Activation of STAT3/Smad1 is a key signaling pathway for progression to glomerulosclerosis in experimental glomerulonephritis. J Biol Chem 280: 7100–7106.

    Article  CAS  PubMed  Google Scholar 

  • Teckchandani AM, Feshchenko EA, Tsygankov AY . (2001). c-Abl facilitates fibronectin matrix production by v-Abl-transformed NIH3T3 cells via activation of small GTPases. Oncogene 20: 1739–1755.

    Article  CAS  PubMed  Google Scholar 

  • Varga J, Abraham D . (2007). Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117: 557–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varga JA, Trojanowska M . 2008). Fibrosis in systemic sclerosis. Rheum Dis Clin North Am 34: 115–143.

    Article  PubMed  Google Scholar 

  • Van Etten RA . (1999). Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol 9: 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T et al. (2001). The Egr-1 transcription factor directly activates PTEN during irradiation-induced signaling. Nat Cell Biol 3: 1124–1128.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wilkes MC, Leof EB, Hirschberg R . (2005). Imatinib mesylate blocks a non-Smad TGF-beta pathway and reduces renal fibrogenesis in vivo. FASEB J 19: 1–11.

    Article  PubMed  Google Scholar 

  • Wenner CE, Yan S . (2003). Biphasic role of TGF-beta1 in signal transduction and crosstalk. J Cell Physiol 196: 42–50.

    Article  CAS  PubMed  Google Scholar 

  • Wilkes MC, Leof EB . (2006). Transforming growth factor beta activation of c-Abl is independent of receptor internalization and regulated by phosphatidylinositol 3-kinase and PAK2 in mesenchymal cultures. J Biol Chem 281: 27846–27854.

    Article  CAS  PubMed  Google Scholar 

  • Woodring PJ, Litwack ED, O’Leary DD, Lucero GR, Wang JY, Hunter T . (2002). Modulation of the Factin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension. J Cell Biol 156: 879–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Weichselbaum R, Kharbanda S, Kufe D. (2000). Role for Lyn tyrosine kinase as a regulator of stress-activated protein kinase activity in response to DNA damage. Mol Cell Biol 20: 5370–5380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Anthony Koleske (Yale University, New Haven, CT, USA) and Pamela Woodring (The Salk Institute, La Jolla, CA) for Abl-null/Arg-null and Abl reconstituted mouse embryonic fibroblasts, and Leonidas Platanias (Northwestern University Feinberg School of Medicine) for Bcr-Abl plasmids and helpful discussions. This study was supported by grants from the National Institutes of Health (AR-42309) and the Department of Defence (W81-XWH-06-01-0278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Varga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, S., Ishida, W., Wu, M. et al. A non-Smad mechanism of fibroblast activation by transforming growth factor-β via c-Abl and Egr-1: selective modulation by imatinib mesylate. Oncogene 28, 1285–1297 (2009). https://doi.org/10.1038/onc.2008.479

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.479

Keywords

This article is cited by

Search

Quick links