Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Activation of the unliganded estrogen receptor by prolactin in breast cancer cells

Abstract

Both prolactin (PRL) and estrogen (E2) are involved in the pathogenesis and progression of mammary neoplasia, but the mechanisms by which these hormones interact to exert their effects in breast cancer cells are not well understood. We show here that PRL is able to activate the unliganded estrogen receptor (ER). In breast cancer cells, PRL activates a reporter plasmid containing estrogen response elements (EREs) and induces the ER target gene pS2. These actions are blocked by the antagonist ICI 182,780, showing that ER is required for the PRL-mediated effect. Moreover, PRL leads to phosphorylation of ERα in serine-118 (P-ERα), a modification related to the potentiation of ligand-independent transcriptional activation. In addition, PRL mimics the effect of E2 on target gene expression by inducing cyclical recruitment of ERα and P-ERα to ERE-containing promoters, resulting in recruitment of co-activators and acetylation of histone H3. Finally, PRL induces expression of c-Myc and Cyclin D1 and leads to increased cell proliferation, which is specifically antagonized by ICI 182,780 or ERα depletion. These results show that ligand-independent ERα activation appears to be an important component of the proliferative and transcriptional actions of PRL in breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Acosta JJ, Munoz RM, Gonzalez L, Subtil-Rodriguez A, Dominguez-Caceres MA, Garcia-Martinez JM et al. (2003). Src mediates prolactin-dependent proliferation of T47D and MCF7 cells via the activation of focal adhesion kinase/Erk1/2 and phosphatidylinositol 3-kinase pathways. Mol Endocrinol 17: 2268–2282.

    Article  CAS  PubMed  Google Scholar 

  • Aranda A, Pascual A . (2001). Nuclear hormone receptors and gene expression. Physiol Rev 81: 1269–1304.

    Article  CAS  PubMed  Google Scholar 

  • Bourdeau V, Deschenes J, Metivier R, Nagai Y, Nguyen D, Bretschneider N et al. (2004). Genome-wide identification of high-affinity estrogen response elements in human and mouse. Mol Endocrinol 18: 1411–1427.

    Article  CAS  PubMed  Google Scholar 

  • Brockman JL, Schroeder MD, Schuler LA . (2002). PRL activates the cyclin D1 promoter via the Jak2/Stat pathway. Mol Endocrinol 16: 774–784.

    Article  CAS  PubMed  Google Scholar 

  • Bunone G, Briand PA, Miksicek RJ, Picard D . (1996). Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15: 2174–2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt AJ, McNeil CM, Musgrove EA, Sutherland RL . (2005). Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 12 (Suppl 1): S47–S59.

    Article  CAS  PubMed  Google Scholar 

  • Campbell GS, Argetsinger LS, Ihle JN, Kelly PA, Rillema JA, Carter-Su C . (1994). Activation of JAK2 tyrosine kinase by prolactin receptors in Nb2 cells and mouse mammary gland explants. Proc Natl Acad Sci USA 91: 5232–5236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll JS, Swarbrick A, Musgrove EA, Sutherland RL . (2002). Mechanisms of growth arrest by c-myc antisense oligonucleotides in MCF-7 breast cancer cells: implications for the antiproliferative effects of antiestrogens. Cancer Res 62: 3126–3131.

    CAS  PubMed  Google Scholar 

  • Clevenger CV, Chang WP, Ngo W, Pasha TL, Montone KT, Tomaszewski JE . (1995). Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. Am J Pathol 146: 695–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clevenger CV, Furth PA, Hankinson SE, Schuler LA . (2003). The role of prolactin in mammary carcinoma. Endocr Rev 24: 1–27.

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Riedl T, Washbrook E, Pace PE, Coombes RC, Egly JM et al. (2000). Activation of estrogen receptor alpha by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol Cell 6: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunuvakkarasu V et al. (2002). Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 21: 4921–4931.

    Article  CAS  PubMed  Google Scholar 

  • De los Santos M, Martinez-Iglesias O, Aranda A . (2007). Anti-estrogenic actions of histone deacetylase inhibitors in MCF-7 breast cancer cells. Endocr Relat Cancer 14: 1021–1028.

    Article  PubMed  Google Scholar 

  • Dong J, Tsai-Morris CH, Dufau ML . (2006). A novel estradiol/estrogen receptor alpha-dependent transcriptional mechanism controls expression of the human prolactin receptor. J Biol Chem 281: 18825–18836.

    Article  CAS  PubMed  Google Scholar 

  • Eeckhoute J, Carroll JS, Geistlinger TR, Torres-Arzayus MI, Brown M . (2006). A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev 20: 2513–2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabris G, Marchetti E, Marzola A, Bagni A, Querzoli P, Nenci I . (1987). Pathophysiology of estrogen receptors in mammary tissue by monoclonal antibodies. J Steroid Biochem 27: 171–176.

    Article  CAS  PubMed  Google Scholar 

  • Fowler AM, Solodin N, Preisler-Mashek MT, Zhang P, Lee AV, Alarid ET . (2004). Increases in estrogen receptor-alpha concentration in breast cancer cells promote serine 118/104/106-independent AF-1 transactivation and growth in the absence of estrogen. FASEB J 18: 81–93.

    Article  CAS  PubMed  Google Scholar 

  • Fuh G, Wells JA . (1995). Prolactin receptor antagonists that inhibit the growth of breast cancer cell lines. J Biol Chem 270: 13133–13137.

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg E, Vonderhaar BK . (1995). Prolactin synthesis and secretion by human breast cancer cells. Cancer Res 55: 2591–2595.

    CAS  PubMed  Google Scholar 

  • Gutzman JH, Miller KK, Schuler LA . (2004a). Endogenous human prolactin and not exogenous human prolactin induces estrogen receptor alpha and prolactin receptor expression and increases estrogen responsiveness in breast cancer cells. J Steroid Biochem Mol Biol 88: 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Gutzman JH, Nikolai SE, Rugowski DE, Watters JJ, Schuler LA . (2005). Prolactin and estrogen enhance the activity of activating protein 1 in breast cancer cells: role of extracellularly regulated kinase 1/2-mediated signals to c-fos. Mol Endocrinol 19: 1765–1778.

    Article  CAS  PubMed  Google Scholar 

  • Gutzman JH, Rugowski DE, Schroeder MD, Watters JJ, Schuler LA . (2004b). Multiple kinase cascades mediate prolactin signals to activating protein-1 in breast cancer cells. Mol Endocrinol 18: 3064–3075.

    Article  CAS  PubMed  Google Scholar 

  • Hennighausen L, Robinson GW . (2005). Information networks in the mammary gland. Nat Rev Mol Cell Biol 6: 715–725.

    Article  CAS  PubMed  Google Scholar 

  • Holst F, Stahl PR, Ruiz C, Hellwinkel O, Jehan Z, Wendland M et al. (2007). Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat Genet 39: 655–660.

    Article  CAS  PubMed  Google Scholar 

  • Johnston SR, Saccani-Jotti G, Smith IE, Salter J, Newby J, Coppen M et al. (1995). Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res 55: 3331–3338.

    CAS  PubMed  Google Scholar 

  • Jonas BA, Privalsky ML . (2004). SMRT and N-CoR corepressors are regulated by distinct kinase signaling pathways. J Biol Chem 279: 54676–54686.

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H et al. (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270: 1491–1494.

    Article  CAS  PubMed  Google Scholar 

  • Likhite VS, Stossi F, Kim K, Katzenellenbogen BS, Katzenellenbogen JA . (2006). Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol Endocrinol 20: 3120–3132.

    Article  CAS  PubMed  Google Scholar 

  • Lipfert L, Fisher JE, Wei N, Scafonas A, Su Q, Yudkovitz J et al. (2006). Antagonist-induced, activation function-2-independent estrogen receptor alpha phosphorylation. Mol Endocrinol 20: 516–533.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L . (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11: 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Lonard DM, Nawaz Z, Smith CL, O'Malley BW . (2000). The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 5: 939–948.

    Article  CAS  PubMed  Google Scholar 

  • McNeil CM, Sergio CM, Anderson LR, Inman CK, Eggleton SA, Murphy NC et al. (2006). c-Myc overexpression and endocrine resistance in breast cancer. J Steroid Biochem Mol Biol 102: 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Medunjanin S, Hermani A, De Servi B, Grisouard J, Rincke G, Mayer D . (2005). Glycogen synthase kinase-3 interacts with and phosphorylates estrogen receptor alpha and is involved in the regulation of receptor activity. J Biol Chem 280: 33006–33014.

    Article  CAS  PubMed  Google Scholar 

  • Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M et al. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115: 751–763.

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E et al. (1996). Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 15: 1292–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migliaccio A, Piccolo D, Castoria G, Di Domenico M, Bilancio A, Lombardi M et al. (1998). Activation of the Src/p21(ras)/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J 17: 2008–2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy L, Cherlet T, Adeyinka A, Niu Y, Snell L, Watson P . (2004). Phospho-serine-118 estrogen receptor-alpha detection in human breast tumors in vivo. Clin Cancer Res 10: 1354–1359.

    Article  CAS  PubMed  Google Scholar 

  • Murphy LC, Weitsman GE, Skliris GP, Teh EM, Li L, Peng B et al. (2006). Potential role of estrogen receptor alpha (ERalpha) phosphorylated at Serine118 in human breast cancer in vivo. J Steroid Biochem Mol Biol 102: 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Murphy LJ, Murphy LC, Vrhovsek E, Sutherland RL, Lazarus L . (1984). Correlation of lactogenic receptor concentration in human breast cancer with estrogen receptor concentration. Cancer Res 44: 1963–1968.

    CAS  PubMed  Google Scholar 

  • Musgrove EA, Hamilton JA, Lee CS, Sweeney KJ, Watts CK, Sutherland RL . (1993). Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol Cell Biol 13: 3577–3587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musgrove EA, Lee CS, Buckley MF, Sutherland RL . (1994). Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci USA 91: 8022–8026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilson LM, Zhu J, Xie J, Malabarba MG, Sakamoto K, Wagner KU et al. (2007). Coactivation of janus tyrosine kinase (Jak)1 positively modulates prolactin–Jak2 signaling in breast cancer: recruitment of ERK and signal transducer and activator of transcription (Stat)3 and enhancement of Akt and Stat5a/b pathways. Mol Endocrinol 21: 2218–2232.

    Article  CAS  PubMed  Google Scholar 

  • Nunez AM, Berry M, Imler JL, Chambon P . (1989). The 5′ flanking region of the pS2 gene contains a complex enhancer region responsive to oestrogens, epidermal growth factor, a tumour promoter (TPA), the c-Ha-ras oncoprotein and the c-jun protein. EMBO J 8: 823–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ormandy CJ, Hall RE, Manning DL, Robertson JF, Blamey RW, Kelly PA et al. (1997). Coexpression and cross-regulation of the prolactin receptor and sex steroid hormone receptors in breast cancer. J Clin Endocrinol Metab 82: 3692–3699.

    CAS  PubMed  Google Scholar 

  • Park KJ, Krishnan V, O'Malley BW, Yamamoto Y, Gaynor RB . (2005). Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell 18: 71–82.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds C, Montone KT, Powell CM, Tomaszewski JE, Clevenger CV . (1997). Expression of prolactin and its receptor in human breast carcinoma. Endocrinology 138: 5555–5560.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder MD, Symowicz J, Schuler LA . (2002). PRL modulates cell cycle regulators in mammary tumor epithelial cells. Mol Endocrinol 16: 45–57.

    Article  CAS  PubMed  Google Scholar 

  • Shafie S, Brooks SC . (1977). Effect of prolactin on growth and the estrogen receptor level of human breast cancer cells (MCF-7). Cancer Res 37: 792–799.

    CAS  PubMed  Google Scholar 

  • Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M . (2000). Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103: 843–852.

    Article  CAS  PubMed  Google Scholar 

  • Touraine P, Martini JF, Zafrani B, Durand JC, Labaille F, Malet C et al. (1998). Increased expression of prolactin receptor gene assessed by quantitative polymerase chain reaction in human breast tumors versus normal breast tissues. J Clin Endocrinol Metab 83: 667–674.

    Article  CAS  PubMed  Google Scholar 

  • Tworoger SS, Hankinson SE . (2006). Prolactin and breast cancer risk. Cancer Lett 243: 160–169.

    Article  CAS  PubMed  Google Scholar 

  • Vicent GP, Ballare C, Nacht AS, Clausell J, Subtil-Rodriguez A, Quiles I et al. (2006). Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol Cell 24: 367–381.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Thakur A, Sun Y, Wu J, Biliran H, Bollig A et al. (2007). Synergistic effect of cyclin D1 and c-Myc leads to more aggressive and invasive mammary tumors in severe combined immunodeficient mice. Cancer Res 67: 3698–3707.

    Article  CAS  PubMed  Google Scholar 

  • Weitsman GE, Li L, Skliris GP, Davie JR, Ung K, Niu Y et al. (2006). Estrogen receptor-alpha phosphorylated at Ser118 is present at the promoters of estrogen-regulated genes and is not altered due to HER-2 overexpression. Cancer Res 66: 10162–10170.

    Article  CAS  PubMed  Google Scholar 

  • Wijayaratne AL, McDonnell DP . (2001). The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276: 35684–35692.

    Article  CAS  PubMed  Google Scholar 

  • Wu RC, Smith CL, O'Malley BW . (2005). Transcriptional regulation by steroid receptor coactivator phosphorylation. Endocr Rev 26: 393–399.

    Article  CAS  PubMed  Google Scholar 

  • Yager JD, Davidson NE . (2006). Estrogen carcinogenesis in breast cancer. N Engl J Med 354: 270–282.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants SAF2006-00371 and BFU2007-62402 from the Ministerio de Educación y Ciencia, RD06/0020/0036 and PIO40682 from the Fondo de Investigaciones Sanitarias, by a grant from the Fundación MMA and by the EU Project CRESCENDO (FP6-018652).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Martín-Pérez or A Aranda.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, L., Zambrano, A., Lazaro-Trueba, I. et al. Activation of the unliganded estrogen receptor by prolactin in breast cancer cells. Oncogene 28, 1298–1308 (2009). https://doi.org/10.1038/onc.2008.473

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.473

Keywords

This article is cited by

Search

Quick links