Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stromal control of oncogenic traits expressed in response to the overexpression of GLI2, a pleiotropic oncogene

Abstract

Hedgehog signaling is often activated in tumors, yet it remains unclear how GLI2, a transcription factor activated by this pathway, acts as an oncogene. We show that GLI2 is a pleiotropic oncogene. The overexpression induces genomic instability and blocks differentiation, likely mediated in part by enhanced expression of the stem cell gene SOX2. GLI2 also induces transforming growth factor (TGF)B1-dependent transdifferentiation of foreskin and tongue, but not gingival fibroblasts into myofibroblasts, creating an environment permissive for invasion by keratinocytes, which are in various stages of differentiation having downregulated GLI2. Thus, upregulated GLI2 expression is sufficient to induce a number of the acquired characteristics of tumor cells; however, the stroma, in a tissue-specific manner, determines whether certain GLI2 oncogenic traits are expressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Albertson DG, Collins C, McCormick F, Gray JW . (2003). Chromosome aberrations in solid tumors. Nat Genet 34: 369–376.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T . (1981). Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211: 1052–1054.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40: 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigelow RL, Jen EY, Delehedde M, Chari NS, McDonnell TJ . (2005). Sonic hedgehog induces epidermal growth factor dependent matrix infiltration in HaCaT keratinocytes. J Invest Dermatol 124: 457–465.

    Article  CAS  PubMed  Google Scholar 

  • Black Jr SA, Palamakumbura AH, Stan M, Trackman PC . (2007). Tissue-specific mechanisms for CCN2/CTGF persistence in fibrotic gingiva: interactions between cAMP and MAPK signaling pathways, and prostaglandin E2-EP3 receptor mediated activation of the c-JUN N-terminal kinase. J Biol Chem 282: 15416–15429.

    Article  CAS  PubMed  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE . (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106: 761–771.

    Article  CAS  PubMed  Google Scholar 

  • Burnworth B, Popp S, Stark HJ, Steinkraus V, Brocker EB, Hartschuh W et al. (2006). Gain of 11q/cyclin D1 overexpression is an essential early step in skin cancer development and causes abnormal tissue organization and differentiation. Oncogene 25: 4399–4412.

    Article  CAS  PubMed  Google Scholar 

  • Cerezo A, Stark HJ, Moshir S, Boukamp P . (2003). Constitutive overexpression of human telomerase reverse transcriptase but not c-myc blocks terminal differentiation in human HaCaT skin keratinocytes. J Invest Dermatol 121: 110–119.

    Article  CAS  PubMed  Google Scholar 

  • Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D et al. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99: 12877–12882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W et al. (2008). The molecular mechanism governing the oncogenic potential of sox2 in breast cancer. J Biol Chem 283: 17969–17978.

    Article  CAS  PubMed  Google Scholar 

  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A . (2007). HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17: 165–172.

    Article  CAS  PubMed  Google Scholar 

  • De Wever O, Mareel M . (2003). Role of tissue stroma in cancer cell invasion. J Pathol 200: 429–447.

    Article  CAS  PubMed  Google Scholar 

  • Delehedde M, Cho SH, Hamm R, Brisbay S, Ananthaswamy HN, Kripke M et al. (2001). Impact of Bcl-2 and Ha-ras on keratinocytes in organotypic culture. J Invest Dermatol 116: 366–373.

    Article  CAS  PubMed  Google Scholar 

  • Fridlyand J, Snijders AM, Ylstra B, Li H, Olshen A, Segraves R et al. (2006). Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6: 96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Grachtchouk V, Grachtchouk M, Lowe L, Johnson T, Wei L, Wang A et al. (2003). The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO J 22: 2741–2751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hooper JE, Scott MP . (2005). Communicating with Hedgehogs. Nat Rev Mol Cell Biol 6: 306–317.

    Article  CAS  PubMed  Google Scholar 

  • Izzo JG, Papadimitrakopoulou VA, Li XQ, Ibarguen H, Lee JS, Ro JY et al. (1998). Dysregulated cyclin D1 expression early in head and neck tumorigenesis: in vivo evidence for an association with subsequent gene amplification. Oncogene 17: 2313–2322.

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Zeisberg M . (2006). Fibroblasts in cancer. Nat Rev Cancer 6: 392–401.

    Article  CAS  PubMed  Google Scholar 

  • Kellermann MG, Sobral LM, da Silva SD, Zecchin KG, Graner E, Lopes MA et al. (2008). Mutual paracrine effects of oral squamous cell carcinoma cells and normal oral fibroblasts: Induction of fibroblast to myofibroblast transdifferentiation and modulation of tumor cell proliferation. Oral Oncol 44: 509–517.

    Article  CAS  PubMed  Google Scholar 

  • Kendall J, Liu Q, Bakleh A, Krasnitz A, Nguyen KC, Lakshmi B et al. (2007). Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci USA 104: 16663–16668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwei KA, Kim YH, Girard L, Kao J, Pacyna-Gengelbach M, Salari K et al. (2008). Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene 27: 3635–3640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacher MD, Tiirikainen MI, Saunier EF, Christian C, Anders M, Oft M et al. (2006). Transforming growth factor-beta receptor inhibition enhances adenoviral infectability of carcinoma cells via up-regulation of coxsackie and adenovirus receptor in conjunction with reversal of epithelial–mesenchymal transition. Cancer Res 66: 1648–1657.

    Article  CAS  PubMed  Google Scholar 

  • Lauth M, Bergstrom A, Shimokawa T, Toftgard R . (2007). Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA 104: 8455–8460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauth M, Toftgard R . (2007). Non-canonical activation of GLI transcription factors: implications for targeted anti-cancer therapy. Cell Cycle 6: 2458–2463.

    Article  CAS  PubMed  Google Scholar 

  • Lewis MP, Lygoe KA, Nystrom ML, Anderson WP, Speight PM, Marshall JF et al. (2004). Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 90: 822–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh D, Dickinson S, Neill GW, Marshall JF, Hart IR, Thomas GJ . (2008). alpha vbeta 6 Integrin promotes the invasion of morphoeic basal cell carcinoma through stromal modulation. Cancer Res 68: 3295–3303.

    Article  CAS  PubMed  Google Scholar 

  • Miele M, Bonatti S, Menichini P, Ottaggio L, Abbondandolo A . (1989). The presence of amplified regions affects the stability of chromosomes in drug-resistant Chinese hamster cells. Mutat Res 219: 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Mueller MM, Fusenig NE . (2004). Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4: 839–849.

    Article  CAS  PubMed  Google Scholar 

  • Murnane JP, Sabatier L . (2004). Chromosome rearrangements resulting from telomere dysfunction and their role in cancer. Bioessays 26: 1164–1174.

    Article  CAS  PubMed  Google Scholar 

  • Neill GW, Harrison WJ, Ikram MS, Williams TD, Bianchi LS, Nadendla SK et al. (2008). GLI1 repression of ERK activity correlates with colony formation and impaired migration in human epidermal keratinocytes. Carcinogenesis 29: 738–746.

    Article  CAS  PubMed  Google Scholar 

  • Nelsen CJ, Kuriyama R, Hirsch B, Negron VC, Lingle WL, Goggin MM et al. (2005). Short term cyclin D1 overexpression induces centrosome amplification, mitotic spindle abnormalities, and aneuploidy. J Biol Chem 280: 768–776.

    Article  CAS  PubMed  Google Scholar 

  • Okubo T, Pevny LH, Hogan BL . (2006). Sox2 is required for development of taste bud sensory cells. Genes Dev 20: 2654–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulson TG, Almasan A, Brody LL, Wahl GM . (1998). Gene amplification in a p53-deficient cell line requires cell cycle progression under conditions that generate DNA breakage. Mol Cell Biol 18: 3089–3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Que J, Okubo T, Goldenring JR, Nam KT, Kurotani R, Morrisey EE et al. (2007). Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 134: 2521–2531.

    Article  CAS  PubMed  Google Scholar 

  • Regl G, Kasper M, Schnidar H, Eichberger T, Neill GW, Ikram MS et al. (2004). The zinc-finger transcription factor GLI2 antagonizes contact inhibition and differentiation of human epidermal cells. Oncogene 23: 1263–1274.

    Article  CAS  PubMed  Google Scholar 

  • Riobo NA, Lu K, Emerson Jr CP . (2006). Hedgehog signal transduction: signal integration and cross talk in development and cancer. Cell Cycle 5: 1612–1615.

    Article  CAS  PubMed  Google Scholar 

  • Roh HJ, Shin DM, Lee JS, Ro JY, Tainsky MA, Hong WK et al. (2000). Visualization of the timing of gene amplification during multistep head and neck tumorigenesis. Cancer Res 60: 6496–6502.

    CAS  PubMed  Google Scholar 

  • Roth JR, Andersson DI . (2004). Amplification-mutagenesis—how growth under selection contributes to the origin of genetic diversity and explains the phenomenon of adaptive mutation. Res Microbiol 155: 342–351.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt BL, Dierks EJ, Homer L, Potter B . (2004). Tobacco smoking history and presentation of oral squamous cell carcinoma. J Oral Maxillofac Surg 62: 1055–1058.

    Article  PubMed  Google Scholar 

  • Schoop VM, Mirancea N, Fusenig NE . (1999). Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J Invest Dermatol 112: 343–353.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu N, Shingaki K, Kaneko-Sasaguri Y, Hashizume T, Kanda T . (2005). When, where and how the bridge breaks: anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. Exp Cell Res 302: 233–243.

    Article  CAS  PubMed  Google Scholar 

  • Snijders AM, Fridlyand J, Mans DA, Segraves R, Jain AN, Pinkel D et al. (2003). Shaping of tumor and drug-resistant genomes by instability and selection. Oncogene 22: 4370–4379.

    Article  CAS  PubMed  Google Scholar 

  • Snijders AM, Hermsen MA, Baughman J, Buffart TE, Huey B, Gajduskova P et al. (2008). Acquired genomic aberrations associated with methotrexate resistance vary with background genomic instability. Genes Chromosomes Cancer 47: 71–83.

    Article  CAS  PubMed  Google Scholar 

  • Snijders AM, Schmidt BL, Fridlyand J, Dekker N, Pinkel D, Jordan RC et al. (2005). Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene 24: 4232–4242.

    Article  CAS  PubMed  Google Scholar 

  • Svensson S, Nilsson K, Ringberg A, Landberg G . (2003). Invade or proliferate? Two contrasting events in malignant behavior governed by p16(INK4a) and an intact Rb pathway illustrated by a model system of basal cell carcinoma. Cancer Res 63: 1737–1742.

    CAS  PubMed  Google Scholar 

  • Tuxhorn JA, Ayala GE, Rowley DR . (2001). Reactive stroma in prostate cancer progression. J Urol 166: 2472–2483.

    Article  CAS  PubMed  Google Scholar 

  • Verona EV, Elkahloun AG, Yang J, Bandyopadhyay A, Yeh IT, Sun LZ . (2007). Transforming growth factor-beta signaling in prostate stromal cells supports prostate carcinoma growth by up-regulating stromal genes related to tissue remodeling. Cancer Res 67: 5737–5746.

    Article  CAS  PubMed  Google Scholar 

  • Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature 450: 893–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R . (2007). Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67: 10123–10128.

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Jiang W, Weghorst CM, Weinstein IB . (1996). Overexpression of cyclin D1 enhances gene amplification. Cancer Res 56: 36–39.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Gillian Hall and Richard Shaw, University of Liverpool for providing oral SCC 1300C2, Dr Fritz Aberger, University of Salzburg for providing the HaCaT Tet cells, HaCaT GLI2 cells and the 6xHis-GLI2ΔN pcDNA4/TO vector construct and Dr Rosemary Akhurst, UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC) and Dr J Yingling (Eli Lilly and Company, Indianapolis, IN) for providing the transforming growth factor β receptor kinase inhibitor, LY2109761. The UCSF HDFCCC Microarray, Tissue, Immunohistochemistry/Molecular Pathology and Genome Analysis Shared Resources provided assistance. This work was supported by NIH Grant CA118323. AMS was the recipient of a postdoctoral fellowship from the California Tobacco-Related Disease Research Program (14FT-0011) and a trainee of the NCI-sponsored Tumor Microenvironment Training Program: Techniques in the Establishment and Manipulation of Organotypic Model Systems. BLS is an appointee of the Western Oral Research Consortium (NIH K12 DE14609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D G Albertson.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snijders, A., Huey, B., Connelly, S. et al. Stromal control of oncogenic traits expressed in response to the overexpression of GLI2, a pleiotropic oncogene. Oncogene 28, 625–637 (2009). https://doi.org/10.1038/onc.2008.421

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.421

Keywords

This article is cited by

Search

Quick links