Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

New p53 target, phosphatase of regenerating liver 1 (PRL-1) downregulates p53

Abstract

Most of the p53 target genes, all except MDM2, COP1 and PIRH2, perform functions in apoptosis, differentiation and cell cycle arrest. The aforementioned oncogenes downregulate p53 through a negative feedback mechanism, and thus contribute to tumor development. In this study, we report a new p53 target, PRL-1, which is believed to be a significant regulator in the development and metastasis of a variety of cancer types. Phosphatase of regenerating liver 1 (PRL-1) overexpression reduced the levels of endogenous and exogenous p53 proteins, and inhibited p53-mediated apoptosis. On the other hand, the ablation of PRL-1 by small interfering RNA (siRNA) increased p53 protein levels. The p53 downregulation was mediated by p53 ubiquitination and subsequent proteasomal degradation. Furthermore, p53 ubiquitination by PRL-1 was achieved through two independent pathways, by inducing PIRH2 transcription and by inducing MDM2 phosphorylation through Akt signaling. In addition, we showed that the PRL-1 gene harbors a p53 response element in the first intron, and its transcription is regulated by the p53 protein. These findings imply that the new oncogenic p53 target, PRL-1, may contribute to tumor development by the downregulation of p53 by a negative feedback mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Achiwa H, Lazo JS . (2007). PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Res 67: 643–650.

    Article  CAS  Google Scholar 

  • Balint EE, Vousden KH . (2001). Activation and activities of the p53 tumour suppressor protein. Br J Cancer 85: 1813–1823.

    Article  CAS  PubMed Central  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L et al. (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104: 263–269.

    Article  CAS  PubMed Central  Google Scholar 

  • Daoud SS, Munson PJ, Reinhold W, Young L, Prabhu VV, Yu Q et al. (2003). Impact of p53 knockout and topotecan treatment on gene expression profiles in human colon carcinoma cells: a pharmacogenomic study. Cancer Res 63: 2782–2793.

    CAS  PubMed  Google Scholar 

  • Diamond RH, Cressman DE, Laz TM, Abrams CS, Taub R . (1994). PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol Cell Biol 14: 3752–3762.

    Article  CAS  PubMed Central  Google Scholar 

  • Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P et al. (2004). The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429: 86–92.

    Article  CAS  Google Scholar 

  • Feng J, Tamaskovic R, Yang Z, Brazil DP, Merlo A, Hess D et al. (2004). Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J Biol Chem 279: 35510–35517.

    Article  CAS  Google Scholar 

  • Fiordalisi JJ, Keller PJ, Cox AD . (2006). PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Res 66: 3153–3161.

    Article  CAS  Google Scholar 

  • Gashler A, Sukhatme VP . (1995). Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol 50: 191–224.

    Article  CAS  Google Scholar 

  • Gius D, Cao XM, Rauscher III FJ, Cohen DR, Curran T, Sukhatme VP . (1990). Transcriptional activation and repression by Fos are independent functions: the C terminus represses immediate-early gene expression via CArG elements. Mol Cell Biol 10: 4243–4255.

    Article  CAS  PubMed Central  Google Scholar 

  • Huang J, Logsdon N, Schmieg FI, Simmons DT . (1998). p53-mediated transcription induces resistance of DNA to UV inactivation. Oncogene 17: 401–411.

    Article  CAS  Google Scholar 

  • Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN . (2005). Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 24: 6719–6728.

    Article  CAS  Google Scholar 

  • Jung H, Seong HA, Ha H . (2007). NM23-H1 tumor suppressor and its interacting partner STRAP activate p53 function. J Biol Chem 282: 35293–35307.

    Article  CAS  Google Scholar 

  • Kim SB, Chae GW, Lee J, Park J, Tak H, Chung JH et al. (2007). Activated Notch1 interacts with p53 to inhibit its phosphorylation and transactivation. Cell Death Differ 14: 982–991.

    Article  Google Scholar 

  • Kobayashi D, Yamada M, Kamagata C, Kaneko R, Tsuji N, Nakamura M et al. (2002). Overexpression of early growth response-1 as a metastasis-regulatory factor in gastric cancer. Anticancer Res 22: 3963–3970.

    PubMed  Google Scholar 

  • Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S et al. (2003). Pirh2, a p53-induced ubiquitin–protein ligase, promotes p53 degradation. Cell 112: 779–791.

    Article  CAS  Google Scholar 

  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W . (2003). Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302: 1972–1975.

    Article  CAS  Google Scholar 

  • Liang F, Liang J, Wang WQ, Sun JP, Udho E, Zhang ZY . (2007). PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. J Biol Chem 282: 5413–5419.

    Article  CAS  Google Scholar 

  • McMahon SB, Monroe JG . (1996). The role of early growth response gene 1 (egr-1) in regulation of the immune response. J Leukoc Biol 60: 159–166.

    Article  CAS  Google Scholar 

  • Milne D, Kampanis P, Nicol S, Dias S, Campbell DG, Fuller-Pace F et al. (2004). A novel site of AKT-mediated phosphorylation in the human MDM2 onco-protein. FEBS Lett 577: 270–276.

    Article  CAS  Google Scholar 

  • Miskad UA, Semba S, Kato H, Yokozaki H . (2004). Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology 71: 176–184.

    Article  CAS  Google Scholar 

  • Nair P, Muthukkumar S, Sells SF, Han SS, Sukhatme VP, Rangnekar VM . (1997). Early growth response-1-dependent apoptosis is mediated by p53. J Biol Chem 272: 20131–20138.

    Article  CAS  Google Scholar 

  • Parker BS, Argani P, Cook BP, Liangfeng H, Chartrand SD, Zhang M et al. (2004). Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res 64: 7857–7866.

    Article  CAS  Google Scholar 

  • Qureshi SA, Rim M, Bruder J, Kolch W, Rapp U, Sukhatme VP et al. (1991). An inhibitory mutant of c-Raf-1 blocks v-Src-induced activation of the Egr-1 promoter. J Biol Chem 266: 20594–20597.

    CAS  PubMed  Google Scholar 

  • Resnick-Silverman L, St Clair S, Maurer M, Zhao K, Manfredi JJ . (1998). Identification of a novel class of genomic DNA-binding sites suggests a mechanism for selectivity in target gene activation by the tumor suppressor protein p53. Genes Dev 12: 2102–2107.

    Article  CAS  PubMed Central  Google Scholar 

  • Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B et al. (2001). A phosphatase associated with metastasis of colorectal cancer. Science 294: 1343–1346.

    Article  CAS  Google Scholar 

  • Seong HA, Jung H, Ha H . (2007). NM23-H1 tumor suppressor physically interacts with serine-threonine kinase receptor-associated protein, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and negatively regulates TGF-beta signaling. J Biol Chem 282: 12075–12096.

    Article  CAS  Google Scholar 

  • Song MS, Song SJ, Ayad NG, Chang JS, Lee JH, Hong HK et al. (2004). The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat Cell Biol 6: 129–137.

    Article  CAS  Google Scholar 

  • Stephens BJ, Han H, Gokhale V, Von Hoff DD . (2005). PRL phosphatases as potential molecular targets in cancer. Mol Cancer Ther 4: 1653–1661.

    Article  CAS  Google Scholar 

  • Wang H, Quah SY, Dong JM, Manser E, Tang JP, Zeng Q . (2007). PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res 67: 2922–2926.

    Article  CAS  Google Scholar 

  • Wang Q, Holmes DI, Powell SM, Lu QL, Waxman J . (2002). Analysis of stromal–epithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene. Cancer Lett 175: 63–69.

    Article  CAS  Google Scholar 

  • Weizer-Stern O, Adamsky K, Margalit O, Ashur-Fabian O, Givol D, Amariglio N et al. (2007). Hepcidin, a key regulator of iron metabolism, is transcriptionally activated by p53. Br J Haematol 138: 253–262.

    Article  CAS  Google Scholar 

  • Werner SR, Lee PA, DeCamp MW, Crowell DN, Randall SK, Crowell PL . (2003). Enhanced cell cycle progression and down regulation of p21(Cip1/Waf1) by PRL tyrosine phosphatases. Cancer Lett 202: 201–211.

    Article  CAS  Google Scholar 

  • Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA . (2003). The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay–Wells syndrome-derived mutations. Mol Cell Biol 23: 2264–2276.

    Article  CAS  PubMed Central  Google Scholar 

  • Wu X, Zeng H, Zhang X, Zhao Y, Sha H, Ge X et al. (2004). Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. Am J Pathol 164: 2039–2054.

    Article  CAS  PubMed Central  Google Scholar 

  • Yoo YG, Lee MO . (2004). Hepatitis B virus X protein induces expression of Fas ligand gene through enhancing transcriptional activity of early growth response factor. J Biol Chem 279: 36242–36249.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Sung Hyun Kang and Dr Kwang Hee Bae (KRIBB) for providing the FLAG-PRL-1. This work was supported by funding from the Ministry of Science and Technology of Korea (M1040101001-06N0101-00110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O-J Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, SH., Kim, D., Heo, YS. et al. New p53 target, phosphatase of regenerating liver 1 (PRL-1) downregulates p53. Oncogene 28, 545–554 (2009). https://doi.org/10.1038/onc.2008.409

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.409

Keywords

This article is cited by

Search

Quick links