Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of the hTERT promoter activity by MSH2, the hnRNPs K and D, and GRHL2 in human oral squamous cell carcinoma cells

Abstract

Higher expression of human telomerase reverse transcriptase (hTERT) and subsequent activation of telomerase occur during cellular immortalization and are maintained in cancer cells. To understand the mode of hTERT expression in cancer cells, we identified cancer-specific trans-regulatory proteins that interact with the hTERT promoter, using the promoter magnetic precipitation assay coupled with mass spectrometry. The identified proteins include MutS homolog 2 (MSH2), heterogeneous nuclear ribonucleoprotein (hnRNP) D, hnRNP K and grainyhead-like 2 (GRHL2). We noticed a higher expression of these proteins in human oral squamous cell carcinoma (OSCC) cells than in normal cells, which do not exhibit telomerase activity. Knockdown of MSH2, hnRNP D and GRHL2 resulted in a notable reduction of the hTERT promoter activity in tested cancer cells. Silencing of the above genes resulted in a significant reduction of the telomerase activity in OSCC cells. Interestingly, among the four identified genes, silencing of GRHL2 was essential in reducing telomerase activity and viability of tested cancer cells. These results suggest a possible role of GRHL2 in telomerase activation during cellular immortalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Cairney CJ, Keith WN . (2008). Integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie 90: 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Campbell MR, Wang Y, Andrew SE, Liu Y . (2006). MSH2 deficiency leads to chromosomal abnormalities, centrosome amplification, and telomere capping defect. Oncogene 25: 2531–2536.

    Article  CAS  PubMed  Google Scholar 

  • Cong YS, Wen J, Bacchetti S . (1999). The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum Mol Genet 8: 137–142.

    Article  CAS  PubMed  Google Scholar 

  • Deng WG, Jayachandran G, Wu G, Xu K, Roth JA, Ji L . (2007). Tumor-specific activation of human telomerase reverses transcriptase promoter activity by activating enhancer-binding protein-2β in human lung cancer cells. J Biol Chem 282: 26460–26470.

    Article  CAS  PubMed  Google Scholar 

  • Emili A, Greenblatt J, Ingles CJ . (1994). Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein. Mol Cell Biol 14: 1582–1593.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiki T, Miura T, Maura M, Shiraishi H, Nishimura S, Imada Y et al. (2007). TAK1 represses transcription of the human telomerase reverse transcriptase gene. Oncogene 26: 5258–5266.

    Article  CAS  PubMed  Google Scholar 

  • He C, Schneider R . (2006). 14-3-3sigma is a p37 AUF1-binding protein that facilitates AUF1 transport and AU-rich mRNA decay. EMBO J 25: 3823–3831.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isenmann S, Cakouros D, Zannettino A, Shi S, Gronthos S . (2007). hTERT transcription is repressed by Cbfa1 in human mesenchymal stem cell populations. J Bone Miner Res 22: 897–906.

    Article  CAS  PubMed  Google Scholar 

  • Kang MK, Guo W, Park NH . (1998). Replicative senescence of normal human oral keratinocytes is associated with the loss of telomerase activity without shortening of telomeres. Cell Growth Differ 9: 85–95.

    CAS  PubMed  Google Scholar 

  • Kang MK, Kameta A, Shin KH, Baluda MA, Park NH . (2004). Senescence occurs with hTERT repression and limited telomere shortening in human oral keratinocytes cultured with feeder cells. J Cell Physiol 199: 364–370.

    Article  CAS  PubMed  Google Scholar 

  • Kang MK, Kim RH, Kim SJ, Yip FK, Shin KH, Dimri GP et al. (2007). Elevated Bmi-1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival. Br J Cancer 96: 126–133.

    Article  CAS  PubMed  Google Scholar 

  • Kiledjian M, DeMaria CT, Brewer G, Novick K . (1997). Identification of AUF1 (heterogeneous nuclear ribonuceoprotein D) as a component of the α-globin mRNA stability complex. Mol Cell Biol 17: 4870–4876.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  • Kim RH, Kang MK, Shin KH, Oo ZM, Han T, Baluda MA et al. (2007). Bmi-1 cooperates with human papillomavirus type 16 E6 to immortalize normal human oral keratinocytes. Exp Cell Res 313: 462–472.

    Article  CAS  PubMed  Google Scholar 

  • Kyo S, Takakura M, Taira T, Kanaya T, Itoh H, Yutsudo M et al. (2000). Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nuc Acids Res 28: 669–677.

    Article  CAS  Google Scholar 

  • Lebel R, McDuff FO, Lavigne P, Grandbois M . (2007). Direct visualization of the binding of c-Myc/Max heterodimeric b-HLH-LZ to E-Box sequences on the hTERT promoter. Biochemistry 46: 10279–10286.

    Article  CAS  PubMed  Google Scholar 

  • Lou F, Chen X, Jalink M, Zhu Q, Ge N, Zhao S et al. (2007). The opposing effect of hypoxia-inducible factor-2α on expression of telomerase reverse transcriptase. Mol Cancer Res 5: 793–800.

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Chen L, Ravitz MJ, Mehtani S, Korenblat K, Pazin MJ et al. (2005). hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promoter, and its regulation of eIF4E contributes to neoplastic transformation. Mol Cell Biol 25: 6436–6453.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moumen A, Masterson P, O'Connor MJ, Jackson SP . (2005). hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 123: 1065–1078.

    Article  CAS  PubMed  Google Scholar 

  • Ostareck-Lederer A, Ostareck DH . (2004). Control of mRNA translation and stability in haematopoietic cells: the function of hnRNPs K and E1/E2. Biol Cell 96: 407–411.

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski J, Klimek-Tomczak K, Wyrwicz LS, Mikula M, Schullery DS, Bomsztyk K . (2004). Heterogeneous nuclear ribonucleoprotein K enhances insulin-induced expression of mitochondrial UCP2 protein. J Biol Chem 279: 54599–545609.

    Article  CAS  PubMed  Google Scholar 

  • Park NH, Min BM, Li SL, Huang MZ, Cherick HM, Doniger J . (1991). Immortalization of normal human oral keratinocytes with type 16 human papillomavirus. Carcinogenesis 12: 1627–1631.

    Article  CAS  PubMed  Google Scholar 

  • Poole JC, Andrews LG, Tollefsbol TO . (2001). Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene 269: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Rizki A, Lundblad V . (2001). Defects in mismatch repair promote telomerase-independent proliferation. Nature 411: 713–716.

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury P, Chaudhuri K . (2007). Evidence for heterogeneous nuclear ribonucleoprotein K overexpression in oral squamous cell carcinoma. Br J Cancer 97: 574–575.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shay JW, Keith WN . (2008). Targeting telomerase for cancer therapeutics. Br J Cancer 98: 677–683.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stramer B, Martin P . (2005). Cell biology: master regulators of sealing and healing. Curr Biol 15: R425–R427.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Muto S, Miyamoto S, Aizawa K, Horikoshi M, Nagai R . (2003). functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I. J Biol Chem 278: 28758–28764.

    Article  CAS  PubMed  Google Scholar 

  • Wagner BJ, DeMaria CT, Sun Y, Wilson GM, Brewer G . (1998). Structure and genomic organization of the human AUF1 gene: alternative pre-mRNA splicing generates four protein isoforms. Genomics 48: 195–202.

    Article  CAS  PubMed  Google Scholar 

  • Wilanowski T, Tuckfield A, Cerruti L, O'Connell S, Saint R, Parekh V et al. (2002). A highly conserved novel family of mammalian developmental transcription factors related to Drosophila grainyhead. Mech Dev 114: 37–50.

    Article  CAS  PubMed  Google Scholar 

  • Won J, Yim J, Kim TK . (2002). Sp1 and Sp3 recruit histone deacetylase to repress transcription of human telomerase reverse transcriptase (hTERT) promoter in normal human somatic cells. J Biol Chem 277: 38230–38238.

    Article  CAS  PubMed  Google Scholar 

  • Yan P, Saraga EP, Bouzourene H, Bosman FT, Benhattar J . (2001). Expression of telomerase genes correlates with telomerase activity in human colorectal carcinogenesis. J Pathol 193: 21–26.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Liu C, Ge Z, Fang X, Zhang X, Straat K et al. (2008). Lysine-specific demethylase 1 (LSD1) is required for the transcriptional repression of the telomerase reverse transcriptase (hTERT) gene. PLos ONE 3: e1446.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr JC Barrett (NIEHS/NIH) for providing the pGL3B-TRTP vector. This study was supported in part by the Grants (K22DE15316, R01DE18295, and K02DE18959 to MKK and R01DE14147 to N-HP) from NIDCR/NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M K Kang or N-H Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, X., Chen, W., Kim, R. et al. Regulation of the hTERT promoter activity by MSH2, the hnRNPs K and D, and GRHL2 in human oral squamous cell carcinoma cells. Oncogene 28, 565–574 (2009). https://doi.org/10.1038/onc.2008.404

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.404

Keywords

This article is cited by

Search

Quick links