Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bortezomib overcomes cell adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma

Abstract

Multiple myeloma (MM) is incurable, mainly because of cell adhesion-mediated drug resistance (CAM-DR). In this study, we performed functional screening using short hairpin RNA (shRNA) to define the molecule(s) responsible for CAM-DR of MM. Using four bona fide myeloma cell lines (KHM-1B, KMS12-BM, RPMI8226 and U266) and primary myeloma cells, we identified CD29 (β1-integrin), CD44, CD49d (α4-integrin, a subunit of VLA-4), CD54 (intercellular adhesion molecule-1 (ICAM-1)), CD138 (syndecan-1) and CD184 (CXC chemokine receptor-4 (CXCR4)) as major adhesion molecules expressed on MM. shRNA-mediated knockdown of CD49d but not CD44, CD54, CD138 and CD184 significantly reversed CAM-DR of myeloma cells to bortezomib, vincristine, doxorubicin and dexamethasone. Experiments using blocking antibodies yielded almost identical results. Bortezomib was relatively resistant to CAM-DR because of its ability to specifically downregulate CD49d expression. This property was unique to bortezomib and was not observed in other anti-myeloma drugs. Pretreatment with bortezomib was able to ameliorate CAM-DR of myeloma cells to vincristine and dexamethasone. These results suggest that VLA-4 plays a critical role in CAM-DR of MM cells. The combination of bortezomib with conventional anti-myeloma drugs may be effective in overcoming CAM-DR of MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. (2007). Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12: 115–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA et al. (1996). Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB. Blood 87: 1104–1112.

    CAS  PubMed  Google Scholar 

  • Cook G, Dumbar M, Franklin IM . (1997). The role of adhesion molecules in multiple myeloma. Acta Haematol 97: 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Corso A, Ferretti E, Lunghi M, Zappasodi P, Mangiacavalli S, De Amici M et al. (2005). Zoledronic acid down-regulates adhesion molecules of bone marrow stromal cells in multiple myeloma: a possible mechanism for its antitumor effect. Cancer 104: 118–125.

    Article  CAS  PubMed  Google Scholar 

  • Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS . (1999). Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93: 1658–1667.

    CAS  PubMed  Google Scholar 

  • Davies AM, Lara Jr PN, Mack PC, Gandara DR . (2007). Incorporating bortezomib into the treatment of lung cancer. Clin Cancer Res 13: 4647s–4651s.

    Article  CAS  Google Scholar 

  • Dolcet X, Llobet D, Pallares J . (2005). NF-κB in development and progression of human cancer. Virchows Arch 446: 475–482.

    Article  CAS  PubMed  Google Scholar 

  • Drexler HG, Matsuo Y, MacLeod RA . (2003). Persistent use of false myeloma cell lines. Hum Cell 16: 101–105.

    Article  PubMed  Google Scholar 

  • Duechler M, Shehata M, Schwarzmeier JD, Hoelbl A, Hilgarth M, Hubmann R . (2005). Induction of apoptosis by proteasome inhibitors in B-CLL cells is associated with downregulation of CD23 and inactivation of Notch2. Leukemia 19: 260–267.

    Article  CAS  PubMed  Google Scholar 

  • Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S et al. (2006). Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 24: 4867–4874.

    Article  PubMed  Google Scholar 

  • Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS . (2000). Adhesion to fibronectin via β1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 19: 4319–4327.

    Article  CAS  PubMed  Google Scholar 

  • Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC . (2007). Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7: 585–598.

    Article  CAS  PubMed  Google Scholar 

  • Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J et al. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61: 3071–3076.

    CAS  PubMed  Google Scholar 

  • Horton TM, Gannavarapu A, Blaney SM, D’Argenio DZ, Plon SE, Berg SL . (2006). Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol 58: 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. (2007). Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12: 131–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi J, Ozaki H, Nonomura C, Shinohara H, Iguchi S, Nojiri H et al. (2005). Transfection of antisense core 2 β1,6-N-acetylglucosaminyltransferase-1 cDNA suppresses selectin ligand expression and tissue infiltration of B-cell precursor leukemia cells. Leukemia 19: 1934–1940.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi J, Shimizu R, Wada T, Ando H, Nakamura M, Ozawa K et al. (2007). E2F-6 suppresses growth-associated apoptosis of human hematopoietic progenitor cells by counteracting proapoptotic activity of E2F-1. Stem Cells 25: 2439–2447.

    Article  CAS  PubMed  Google Scholar 

  • Kirschner KM, Wagner N, Wagner KD, Wellmann S, Scholz H . (2006). The Wilms tumor suppressor Wt1 promotes cell adhesion through transcriptional activation of the α4 integrin gene. J Biol Chem 281: 31930–31939.

    Article  CAS  PubMed  Google Scholar 

  • Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A et al. (2003). Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 78: 21–33.

    Article  PubMed  Google Scholar 

  • Landowski TH, Olashaw NE, Agrawal D, Dalton WS . (2003). Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-κB (RelB/p50) in myeloma cells. Oncogene 22: 2417–2421.

    Article  CAS  PubMed  Google Scholar 

  • Lin YZ, Yao SY, Veach RA, Torgerson TR, Hawiger J . (1995). Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem 270: 14255–14258.

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al. (2003). Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 9: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  • Michigami T, Shimizu N, Williams PJ, Niewolna M, Dallas SL, Mundy GR et al. (2000). Cell–cell contact between marrow stromal cells and myeloma cells via VCAM-1 and α4β1-integrin enhances production of osteoclast-stimulating activity. Blood 96: 1953–1960.

    CAS  PubMed  Google Scholar 

  • Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T et al. (2002). Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99: 4525–4530.

    Article  CAS  PubMed  Google Scholar 

  • Miyakoshi S, Kami M, Yuji K, Matsumura T, Takatoku M, Sasaki M et al. (2006). Severe pulmonary complications in Japanese patients after bortezomib treatment for refractory multiple myeloma. Blood 107: 3492–3494.

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Kiyono T, Imabayashi H, Takeda Y, Tsuchiya K, Miyoshi S et al. (2005). Combination of hTERT and bmi-1, E6, or E7 induces prolongation of the life span of bone marrow stromal cells from an elderly donor without affecting their neurogenic potential. Mol Cell Biol 25: 5183–5195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori Y, Shimizu N, Dallas M, Niewolna M, Story B, Williams PJ et al. (2004). Anti-α4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood 104: 2149–2154.

    Article  CAS  PubMed  Google Scholar 

  • Nefedova Y, Landowski TH, Dalton WS . (2003). Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 17: 1175–1182.

    Article  CAS  PubMed  Google Scholar 

  • Noborio-Hatano K, Kano Y, Akustu M, Kikuchi J, Ueda M, Takatoku M et al. (2007). Effects of bortezomib in combination with conventional drugs against human lymphoid cell lines. Jpn J Clin Hematol 48: 1093a.

    Google Scholar 

  • Odgerel T, Kikuchi J, Wada T, Shimizu R, Futaki K, Kano Y et al. (2008). The FLT3 inhibitor PKC412 exerts differential cell cycle effects on leukemic cells depending on the presence of FLT3 mutations. Oncogene 27: 3102–3110.

    Article  CAS  PubMed  Google Scholar 

  • Olson DL, Burkly LC, Leone DR, Dolinski BM, Lobb RR . (2005). Anti-α4 integrin monoclonal antibody inhibits multiple myeloma growth in a murine model. Mol Cancer Ther 4: 91–99.

    CAS  PubMed  Google Scholar 

  • Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N et al. (2001). Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 98: 11581–11586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW . (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acid Res 29: e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al. (2003). A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348: 2609–2617.

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al. (2005). Assessment of proteasome inhibition for extending remissions (APEX) investigators. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352: 2487–2498.

    Article  CAS  PubMed  Google Scholar 

  • Rosen GD, Barks JL, Iademarco MF, Fisher RJ, Dean DC . (1994). An intricate arrangement of binding sites for the Ets family of transcription factors regulates activity of the α4 integrin gene promoter. J Biol Chem 269: 15652–15660.

    CAS  PubMed  Google Scholar 

  • Schmidmaier R, Morsdorf K, Baumann P, Emmerich B, Meinhardt G . (2006). Evidence for cell adhesion-mediated drug resistance of multiple myeloma cells in vivo. Int J Biol Markers 21: 218–222.

    CAS  PubMed  Google Scholar 

  • Takatoku M, Noborio-Hatano K, Takahashi S, Kikuchi S, Mori M, Muroi K et al. (2004). Treatment with a proteasome inhibitor, bortezomib, for thalidomide-resistant multiple myeloma. Jpn J Clin Hematol 45: 144–148.

    Google Scholar 

  • Tatsumi T, Shimazaki C, Goto H, Araki S, Sudo Y, Yamagata N et al. (1996). Expression of adhesion molecules on myeloma cells. Jpn J Cancer Res 87: 837–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanamandra N, Colaco NM, Parquet NA, Buzzeo RW, Boulware D, Wright G et al. (2006). Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia. Clin Cancer Res 12: 591–599.

    Article  CAS  PubMed  Google Scholar 

  • Zutter MM, Ryan EE, Painter AD . (1997). Binding of phosphorylated Sp1 protein to tandem Sp1 binding sites regulates α2 integrin gene core promoter activity. Blood 90: 678–689.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from the Ministry of Health, Welfare, and Labor of Japan, and Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Technology of Japan. KN-H and JK are winners of the Jichi Medical School Young Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Furukawa.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatano, K., Kikuchi, J., Takatoku, M. et al. Bortezomib overcomes cell adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma. Oncogene 28, 231–242 (2009). https://doi.org/10.1038/onc.2008.385

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.385

Keywords

This article is cited by

Search

Quick links