Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

LKB1; linking cell structure and tumor suppression

Abstract

Germ line mutations in the LKB1 tumor suppressor gene are associated with the Peutz–Jeghers polyposis and cancer syndrome. Somatic mutations in Lkb1 are observed in sporadic pulmonary, pancreatic and biliary cancers and melanomas. The LKB1 serine–threonine kinase functionally and biochemically links control of cellular structure and energy utilization through activation of the AMPK family of kinases. Lkb1 regulates cell polarity through downstream kinases including AMPKs, MARKs and BRSKs, and nutrient utilization and cellular metabolism through the AMPK–mTOR pathway. LKB1 has been shown to affect normal chromosomal segregation, TGF-β signaling in the mesenchyme and WNT and p53 activity. Although each of the LKB1-dependent processes and downstream pathways have been individually delineated through work across a range of experimental systems, how they relate to Lkb1's role as a tumor suppressor remains to be fully explored and elucidated. The recent development of mouse cancer models harboring engineered mutations in Lkb1 have offered insights into how LKB1 may be functioning to restrain tumorigenesis and how its role as a master regulator of polarity and metabolism could contribute to its tumor suppressor function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Alessi DR, Sakamoto K, Bayascas JR . (2006). LKB1-dependent signaling pathways. Annu Rev Biochem 75: 137–163.

    Article  CAS  PubMed  Google Scholar 

  • Amin RM, Hiroshima K, Iyoda A, Hoshi K, Honma K, Kuroki M et al. (2008). LKB1 protein expression in neuroendocrine tumors of the lung. Pathol Int 58: 84–88.

    Article  PubMed  Google Scholar 

  • Aretz S, Stienen D, Uhlhaas S, Loff S, Back W, Pagenstecher C et al. (2005). High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum Mutat 26: 513–519.

    Article  CAS  PubMed  Google Scholar 

  • Asada N, Sanada K, Fukada Y . (2007). LKB1 regulates neuronal migration and neuronal differentiation in the developing neocortex through centrosomal positioning. J Neurosci 27: 11769–11775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avizienyte E, Loukola A, Roth S, Hemminki A, Tarkkanen M, Salovaara R et al. (1999). LKB1 somatic mutations in sporadic tumors. Am J Pathol 154: 677–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avizienyte E, Roth S, Loukola A, Hemminki A, Lothe RA, Stenwig AE et al. (1998). Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors. Cancer Res 58: 2087–2090.

    CAS  PubMed  Google Scholar 

  • Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA et al. (2003). Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 22: 3062–3072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ et al. (2004a). Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116: 457–466.

    Article  CAS  PubMed  Google Scholar 

  • Baas AF, Smit L, Clevers H . (2004b). LKB1 tumor suppressor protein: PARtaker in cell polarity. Trends Cell Biol 14: 312–319.

    Article  CAS  PubMed  Google Scholar 

  • Bardeesy N, Sinha M, Hezel AF, Signoretti S, Hathaway NA, Sharpless NE et al. (2002). Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 419: 162–167.

    Article  CAS  PubMed  Google Scholar 

  • Barnes AP, Lilley BN, Pan YA, Plummer LJ, Powell AW, Raines AN et al. (2007). LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129: 549–563.

    Article  CAS  PubMed  Google Scholar 

  • Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, Balloux F et al. (2004). Genome-wide survey of protein kinases required for cell cycle progression. Nature 432: 980–987.

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303: 848–851.

    Article  CAS  PubMed  Google Scholar 

  • Bignell GR, Barfoot R, Seal S, Collins N, Warren W, Stratton MR . (1998). Low frequency of somatic mutations in the LKB1/Peutz-Jeghers syndrome gene in sporadic breast cancer. Cancer Res 58: 1384–1386.

    CAS  PubMed  Google Scholar 

  • Blumer JB, Bernard ML, Peterson YK, Nezu J, Chung P, Dunican DJ et al. (2003). Interaction of activator of G-protein signaling 3 (AGS3) with LKB1, a serine/threonine kinase involved in cell polarity and cell cycle progression: phosphorylation of the G-protein regulatory (GPR) motif as a regulatory mechanism for the interaction of GPR motifs with Gi alpha. J Biol Chem 278: 23217–23220.

    Article  CAS  PubMed  Google Scholar 

  • Bonaccorsi S, Mottier V, Giansanti MG, Bolkan BJ, Williams B, Goldberg ML et al. (2007). The Drosophila Lkb1 kinase is required for spindle formation and asymmetric neuroblast division. Development 134: 2183–2193.

    Article  CAS  PubMed  Google Scholar 

  • Boudeau J, Scott JW, Resta N, Deak M, Kieloch A, Komander D et al. (2004). Analysis of the LKB1-STRAD-MO25 complex. J Cell Sci 117: 6365–6375.

    Article  CAS  PubMed  Google Scholar 

  • Carling D . (2004). The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci 29: 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Carretero J, Medina PP, Blanco R, Smit L, Tang M, Roncador G et al. (2007). Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 26: 1616–1625.

    Article  CAS  PubMed  Google Scholar 

  • Cohen D, Brennwald PJ, Rodriguez-Boulan E, Musch A . (2004). Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton. J Cell Biol 164: 717–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen D, Tian Y, Musch A . (2007). Par1b promotes hepatic-type lumen polarity in Madin Darby canine kidney cells via myosin II- and E-cadherin-dependent signaling. Mol Biol Cell 18: 2203–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins SP, Reoma JL, Gamm DM, Uhler MD . (2000). LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J 345 (Part 3): 673–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras CM, Gurumurthy S, Haynie JM, Shirley LJ, Akbay EA, Wingo SN et al. (2008). Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res 68: 759–766.

    Article  CAS  PubMed  Google Scholar 

  • Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL . (2004). Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18: 1533–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Leng WW, Westerman AM, Weterman MA, De Rooij FW, Dekken Hv H, De Goeij AF et al. (2003). Cyclooxygenase 2 expression and molecular alterations in Peutz-Jeghers hamartomas and carcinomas. Clin Cancer Res 9: 3065–3072.

    CAS  PubMed  Google Scholar 

  • Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E . (1997). MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89: 297–308.

    Article  CAS  PubMed  Google Scholar 

  • Dunlop MG . (2002). Guidance on gastrointestinal surveillance for hereditary non-polyposis colorectal cancer, familial adenomatous polypolis, juvenile polyposis, and Peutz-Jeghers syndrome. Gut 51 (Suppl 5): V21–V27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elbert M, Cohen D, Musch A . (2006). PAR1b promotes cell-cell adhesion and inhibits dishevelled-mediated transformation of Madin-Darby canine kidney cells. Mol Biol Cell 17: 3345–3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Entius MM, Keller JJ, Westerman AM, van Rees BP, van Velthuysen ML, de Goeij AF et al. (2001). Molecular genetic alterations in hamartomatous polyps and carcinomas of patients with Peutz-Jeghers syndrome. J Clin Pathol 54: 126–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteller M, Avizienyte E, Corn PG, Lothe RA, Baylin SB, Aaltonen LA et al. (2000). Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene 19: 164–168.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S . (2008). Polarity proteins in migration and invasion. Oncogene 27: 6970–6980.

    Article  CAS  PubMed  Google Scholar 

  • Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD . (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ 330: 1304–1305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Forcet C, Billaud M . (2007). Dialogue between LKB1 and AMPK: a hot topic at the cellular pole. Sci STKE 2007: pe51.

    Article  PubMed  Google Scholar 

  • Forcet C, Etienne-Manneville S, Gaude H, Fournier L, Debilly S, Salmi M et al. (2005). Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum Mol Genet 14: 1283–1292.

    Article  CAS  PubMed  Google Scholar 

  • Forster LF, Defres S, Goudie DR, Baty DU, Carey FA . (2000). An investigation of the Peutz-Jeghers gene (LKB1) in sporadic breast and colon cancers. J Clin Pathol 53: 791–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV et al. (2000). Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119: 1447–1453.

    Article  CAS  PubMed  Google Scholar 

  • Giardiello FM, Trimbath JD . (2006). Peutz-Jeghers syndrome and management recommendations. Clin Gastroenterol Hepatol 4: 408–415.

    Article  PubMed  Google Scholar 

  • Giardiello FM, Welsh SB, Hamilton SR, Offerhaus GJ, Gittelsohn AM, Booker SV et al. (1987). Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med 316: 1511–1514.

    Article  CAS  PubMed  Google Scholar 

  • Gruber SB, Entius MM, Petersen GM, Laken SJ, Longo PA, Boyer R et al. (1998). Pathogenesis of adenocarcinoma in Peutz-Jeghers syndrome. Cancer Res 58: 5267–5270.

    CAS  PubMed  Google Scholar 

  • Guldberg P, thor Straten P, Ahrenkiel V, Seremet T, Kirkin AF, Zeuthen J . (1999). Somatic mutation of the Peutz-Jeghers syndrome gene, LKB1/STK11, in malignant melanoma. Oncogene 18: 1777–1780.

    Article  CAS  PubMed  Google Scholar 

  • Gurumurthy S, Hezel AF, Sahin E, Berger JH, Bosenberg MW, Bardeesy N . (2008). LKB1 deficiency sensitizes mice to carcinogen-induced tumorigenesis. Cancer Res 68: 55–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30: 214–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG . (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8: 774–785.

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama M . (2008). Linking epithelial polarity and carcinogenesis by multitasking Heliobacter pylori virulence factor CagA. Oncogene 27: 7047–7054.

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP et al. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2: 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ et al. (2006). Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res 12: 3209–3215.

    Article  CAS  PubMed  Google Scholar 

  • Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A et al. (1998). A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391: 184–187.

    Article  CAS  PubMed  Google Scholar 

  • Hemminki A, Tomlinson I, Markie D, Jarvinen H, Sistonen P, Bjorkqvist AM et al. (1997). Localization of a susceptibility locus for Peutz-Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nat Genet 15: 87–90.

    Article  CAS  PubMed  Google Scholar 

  • Hezel AF, Gurumurthy S, Granot Z, Swisa A, Chu GC, Bailey G et al. (2008). Pancreatic LKB1 deletion leads to acinar polarity defects and cystic neoplasms. Mol Cell Biol 28: 2414–2425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horman S, Morel N, Vertommen D, Hussain N, Neumann D, Beauloye C et al. (2008). AMP-activated protein kinase phosphorylates and desensitizes smooth muscle myosin light chain kinase. J Biol Chem 283: 18505–18512.

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL et al. (2008). Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J 412: 211–221.

    Article  CAS  PubMed  Google Scholar 

  • Hurov J, Piwnica-Worms H . (2007). The Par-1/MARK family of protein kinases: from polarity to metabolism. Cell Cycle 6: 1966–1969.

    Article  CAS  PubMed  Google Scholar 

  • Hurov JB, Huang M, White LS, Lennerz J, Choi CS, Cho YR et al. (2007). Loss of the Par-1b/MARK2 polarity kinase leads to increased metabolic rate, decreased adiposity, and insulin hypersensitivity in vivo. Proc Natl Acad Sci USA 104: 5680–5685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikediobi ON, Davies H, Bignell G, Edkins S, Stevens C, O'Meara S et al. (2006). Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther 5: 2606–2612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen M, de Leng WW, Baas AF, Myoshi H, Mathus-Vliegen L, Taketo MM et al. (2006). Mucosal prolapse in the pathogenesis of Peutz-Jeghers polyposis. Gut 55: 1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeghers H, Mc KV, Katz KH . (1949). Generalized intestinal polyposis and melanin spots of the oral mucosa, lips and digits; a syndrome of diagnostic significance. N Engl J Med 241: 1031–1036.

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P et al. (2007). LKB1 modulates lung cancer differentiation and metastasis. Nature 448: 807–810.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez AI, Fernandez P, Dominguez O, Dopazo A, Sanchez-Cespedes M . (2003). Growth and molecular profile of lung cancer cells expressing ectopic LKB1: down-regulation of the phosphatidylinositol 3′-phosphate kinase/PTEN pathway. Cancer Res 63: 1382–1388.

    CAS  PubMed  Google Scholar 

  • Jishage K, Nezu J, Kawase Y, Iwata T, Watanabe M, Miyoshi A et al. (2002). Role of Lkb1, the causative gene of Peutz-Jegher′s syndrome, in embryogenesis and polyposis. Proc Natl Acad Sci USA 99: 8903–8908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18: 283–293.

    Article  CAS  PubMed  Google Scholar 

  • Katajisto P, Vaahtomeri K, Ekman N, Ventela E, Ristimaki A, Bardeesy N et al. (2008). LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis. Nat Genet 40: 455–459.

    Article  CAS  PubMed  Google Scholar 

  • Katajisto P, Vallenius T, Vaahtomeri K, Ekman N, Udd L, Tiainen M et al. (2007). The LKB1 tumor suppressor kinase in human disease. Biochim Biophys Acta 1775: 63–75.

    CAS  PubMed  Google Scholar 

  • Kemphues KJ, Priess JR, Morton DG, Cheng NS . (1988). Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Kim BG, Li C, Qiao W, Mamura M, Kasprzak B, Anver M et al. (2006). Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441: 1015–1019.

    Article  CAS  PubMed  Google Scholar 

  • Koh HJ, Arnolds DE, Fujii N, Tran TT, Rogers MJ, Jessen N et al. (2006). Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol Cell Biol 26: 8217–8227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koivunen JP, Kim J, Lee J, Rogers AM, Park JO, Zhao X et al. (2008). Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Br J Cancer 99: 245–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Koh H, Kim M, Kim Y, Lee SY, Karess RE et al. (2007). Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447: 1017–1020.

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M et al. (2007). The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9: 218–224.

    Article  CAS  PubMed  Google Scholar 

  • Lim W, Olschwang S, Keller JJ, Westerman AM, Menko FH, Boardman LA et al. (2004). Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology 126: 1788–1794.

    Article  CAS  PubMed  Google Scholar 

  • Lin-Marq N, Borel C, Antonarakis SE . (2005). Peutz-Jeghers LKB1 mutants fail to activate GSK-3beta, preventing it from inhibiting Wnt signaling. Mol Genet Genomics 273: 184–196.

    Article  CAS  PubMed  Google Scholar 

  • Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J et al. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23: 833–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin SG, St Johnston D . (2003). A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 421: 379–384.

    Article  CAS  PubMed  Google Scholar 

  • Mehenni H, Lin-Marq N, Buchet-Poyau K, Reymond A, Collart MA, Picard D et al. (2005). LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. Hum Mol Genet 14: 2209–2219.

    Article  CAS  PubMed  Google Scholar 

  • Memmott RM, Gills JJ, Hollingshead M, Powers MC, Chen Z, Kemp B et al. (2008). Phosphatidylinositol ether lipid analogues induce AMP-activated protein kinase-dependent death in LKB1-mutant non small cell lung cancer cells. Cancer Res 68: 580–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirouse V, Swick LL, Kazgan N, St Johnston D, Brenman JE . (2007). LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J Cell Biol 177: 387–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyaki M, Iijima T, Hosono K, Ishii R, Yasuno M, Mori T et al. (2000). Somatic mutations of LKB1 and beta-catenin genes in gastrointestinal polyps from patients with Peutz-Jeghers syndrome. Cancer Res 60: 6311–6313.

    CAS  PubMed  Google Scholar 

  • Miyoshi H, Nakau M, Ishikawa TO, Seldin MF, Oshima M, Taketo MM . (2002). Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res 62: 2261–2266.

    CAS  PubMed  Google Scholar 

  • Nakau M, Miyoshi H, Seldin MF, Imamura M, Oshima M, Taketo MM . (2002). Hepatocellular carcinoma caused by loss of heterozygosity in Lkb1 gene knockout mice. Cancer Res 62: 4549–4553.

    CAS  PubMed  Google Scholar 

  • Narbonne P, Roy R . (2006). Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development 133: 611–619.

    Article  CAS  PubMed  Google Scholar 

  • Olschwang S, Boisson C, Thomas G . (2001). Peutz-Jeghers families unlinked to STK11/LKB1 gene mutations are highly predisposed to primitive biliary adenocarcinoma. J Med Genet 38: 356–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ossipova O, Bardeesy N, DePinho RA, Green JB . (2003). LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nat Cell Biol 5: 889–894.

    Article  CAS  PubMed  Google Scholar 

  • Partanen JI, Nieminen AI, Makela TP, Klefstrom J . (2007). Suppression of oncogenic properties of c-Myc by LKB1-controlled epithelial organization. Proc Natl Acad Sci USA 104: 14694–14699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pearson HB, McCarthy A, Collins CM, Ashworth A, Clarke AR . (2008). Lkb1 deficiency causes prostate neoplasia in the mouse. Cancer Res 68: 2223–2232.

    Article  CAS  PubMed  Google Scholar 

  • Peutz J . (1921). Ned Maandschr Geneesk, 134–146.

  • Podczaski E, Kaminski PF, Pees RC, Singapuri K, Sorosky JI . (1991). Peutz-Jeghers syndrome with ovarian sex cord tumor with annular tubules and cervical adenoma malignum. Gynecol Oncol 42: 74–78.

    Article  CAS  PubMed  Google Scholar 

  • Rossi DJ, Ylikorkala A, Korsisaari N, Salovaara R, Luukko K, Launonen V et al. (2002). Induction of cyclooxygenase-2 in a mouse model of Peutz-Jeghers polyposis. Proc Natl Acad Sci USA 99: 12327–12332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W et al. (1999). Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malignant melanomas. J Invest Dermatol 112: 509–511.

    Article  CAS  PubMed  Google Scholar 

  • Sahin F, Maitra A, Argani P, Sato N, Maehara N, Montgomery E et al. (2003). Loss of Stk11/Lkb1 expression in pancreatic and biliary neoplasms. Mod Pathol 16: 686–691.

    Article  PubMed  Google Scholar 

  • Sakamoto K, McCarthy A, Smith D, Green KA, Grahame Hardie D, Ashworth A et al. (2005). Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24: 1810–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM et al. (2002). Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62: 3659–3662.

    CAS  PubMed  Google Scholar 

  • Sapkota GP, Boudeau J, Deak M, Kieloch A, Morrice N, Alessi DR . (2002a). Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome. Biochem J 362: 481–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapkota GP, Deak M, Kieloch A, Morrice N, Goodarzi AA, Smythe C et al. (2002b). Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. Biochem J 368: 507–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapkota GP, Kieloch A, Lizcano JM, Lain S, Arthur JS, Williams MR et al. (2001b). Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem 276: 19469–19482.

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Rosty C, Jansen M, Fukushima N, Ueki T, Yeo CJ et al. (2001). STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 159: 2017–2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider MB, Matsuzaki H, Haorah J, Ulrich A, Standop J, Ding XZ et al. (2001). Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology 120: 1263–1270.

    Article  CAS  PubMed  Google Scholar 

  • Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S et al. (2004). The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119: 61–74.

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ . (2006). Glucose metabolism and cancer. Curr Opin Cell Biol 18: 598–608.

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al. (2004a). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. (2004b). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101: 3329–3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA et al. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310: 1642–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelly M, Cancedda L, Heilshorn S, Sumbre G, Poo MM . (2007). LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 129: 565–577.

    Article  CAS  PubMed  Google Scholar 

  • Song P, Wu Y, Xu J, Xie Z, Dong Y, Zhang M et al. (2007). Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner. Circulation 116: 1585–1595.

    Article  CAS  PubMed  Google Scholar 

  • Song P, Xie Z, Wu Y, Xu J, Dong Y, Zou MH . (2008). Protein kinase Czeta-dependent LKB1 serine 428 phosphorylation increases LKB1 nucleus export and apoptosis in endothelial cells. J Biol Chem 283: 12446–12455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spicer J, Rayter S, Young N, Elliott R, Ashworth A, Smith D . (2003). Regulation of the Wnt signalling component PAR1A by the Peutz-Jeghers syndrome kinase LKB1. Oncogene 22: 4752–4756.

    Article  CAS  PubMed  Google Scholar 

  • Spigelman AD, Murday V, Phillips RK . (1989). Cancer and the Peutz-Jeghers syndrome. Gut 30: 1588–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su GH, Hruban RH, Bansal RK, Bova GS, Tang DJ, Shekher MC et al. (1999). Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Am J Pathol 154: 1835–1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda H, Miyoshi H, Kojima Y, Oshima M, Taketo MM . (2006). Accelerated onsets of gastric hamartomas and hepatic adenomas/carcinomas in Lkb1+/-p53-/- compound mutant mice. Oncogene 25: 1816–1820.

    Article  CAS  PubMed  Google Scholar 

  • Tiainen M, Vaahtomeri K, Ylikorkala A, Makela TP . (2002). Growth arrest by the LKB1 tumor suppressor: induction of p21(WAF1/CIP1). Hum Mol Genet 11: 1497–1504.

    Article  CAS  PubMed  Google Scholar 

  • Tiainen M, Ylikorkala A, Makela TP . (1999). Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci USA 96: 9248–9251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson IP, Houlston RS . (1997). Peutz-Jeghers syndrome. J Med Genet 34: 1007–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udd L, Katajisto P, Rossi DJ, Lepisto A, Lahesmaa AM, Ylikorkala A et al. (2004). Suppression of Peutz-Jeghers polyposis by inhibition of cyclooxygenase-2. Gastroenterology 127: 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  • Volikos E, Robinson J, Aittomaki K, Mecklin JP, Jarvinen H, Westerman AM et al. (2006). LKB1 exonic and whole gene deletions are a common cause of Peutz-Jeghers syndrome. J Med Genet 43: e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZJ, Ellis I, Zauber P, Iwama T, Marchese C, Talbot I et al. (1999). Allelic imbalance at the LKB1 (STK11) locus in tumours from patients with Peutz-Jeghers′ syndrome provides evidence for a hamartoma-(adenoma)-carcinoma sequence. J Pathol 188: 9–13.

    Article  CAS  PubMed  Google Scholar 

  • Wang ZJ, Taylor F, Churchman M, Norbury G, Tomlinson I . (1998). Genetic pathways of colorectal carcinogenesis rarely involve the PTEN and LKB1 genes outside the inherited hamartoma syndromes. Am J Pathol 153: 363–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts JL, Morton DG, Bestman J, Kemphues KJ . (2000). The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development 127: 1467–1475.

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Amos CI, Stephens LC, Campos I, Deng JM, Behringer RR et al. (2005). Mutation of Lkb1 and p53 genes exert a cooperative effect on tumorigenesis. Cancer Res 65: 11297–11303.

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Amos CI, Zhang N, Wang X, Rashid A, Walker CL et al. (2008). Suppression of Peutz-Jeghers polyposis by targeting mammalian target of rapamycin signaling. Clin Cancer Res 14: 1167–1171.

    Article  CAS  PubMed  Google Scholar 

  • Westerman AM, Entius MM, de Baar E, Boor PP, Koole R, van Velthuysen ML et al. (1999). Peutz-Jeghers syndrome: 78-year follow-up of the original family. Lancet 353: 1211–1215.

    Article  CAS  PubMed  Google Scholar 

  • Williams T, Brenman JE . (2008). LKB1 and AMPK in cell polarity and division. Trends Cell Biol 18: 193–198.

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Dong Y, Zhang M, Cui MZ, Cohen RA, Riek U et al. (2006). Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J Biol Chem 281: 6366–6375.

    Article  CAS  PubMed  Google Scholar 

  • Yee NS, Furth EE, Pack M . (2003). Clinicopathologic and molecular features of pancreatic adenocarcinoma associated with Peutz-Jeghers syndrome. Cancer Biol Ther 2: 38–47.

    Article  PubMed  Google Scholar 

  • Ylikorkala A, Rossi DJ, Korsisaari N, Luukko K, Alitalo K, Henkemeyer M et al. (2001). Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 293: 1323–1326.

    Article  CAS  PubMed  Google Scholar 

  • Young S, Gooneratne S, Straus II FH, Zeller WP, Bulun SE, Rosenthal IM . (1995). Feminizing Sertoli cell tumors in boys with Peutz-Jeghers syndrome. Am J Surg Pathol 19: 50–58.

    Article  CAS  PubMed  Google Scholar 

  • Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M . (2006). Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 66: 10269–10273.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li J, Young LH, Caplan MJ . (2006). AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc Natl Acad Sci USA 103: 17272–17277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Schafer-Hales K, Khuri FR, Zhou W, Vertino PM, Marcus AI . (2008). The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity. Cancer Res 68: 740–748.

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Cantley LC . (2007). Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proc Natl Acad Sci USA 104: 819–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Reuben Shaw and Rob Screaton for critical review of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Bardeesy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hezel, A., Bardeesy, N. LKB1; linking cell structure and tumor suppression. Oncogene 27, 6908–6919 (2008). https://doi.org/10.1038/onc.2008.342

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.342

Keywords

This article is cited by

Search

Quick links